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Abstract—Similarity measurement is a critical component in content-based image retrieval systems, and learning a good distance
metric can significantly improve retrieval performance. However, despite extensive study, there are several major shortcomings with
the existing approaches for distance metric learning that can significantly affect their application to medical image retrieval. In
particular, “similarity” can mean very different things in image retrieval: resemblance in visual appearance (e.g., two images that look
like one another) or similarity in semantic annotation (e.g., two images of tumors that look quite different yet are both malignant).
Current approaches for distance metric learning typically address only one goal without consideration of the other. This is problematic
for medical image retrieval where the goal is to assist doctors in decision making. In these applications, given a query image, the goal is
to retrieve similar images from a reference library whose semantic annotations could provide the medical professional with greater
insight into the possible interpretations of the query image. If the system were to retrieve images that did not look like the query, then
users would be less likely to trust the system; on the other hand, retrieving images that appear superficially similar to the query but are
semantically unrelated is undesirable because that could lead users toward an incorrect diagnosis. Hence, learning a distance metric
that preserves both visual resemblance and semantic similarity is important. We emphasize that, although our study is focused on
medical image retrieval, the problem addressed in this work is critical to many image retrieval systems. We present a boosting
framework for distance metric learning that aims to preserve both visual and semantic similarities. The boosting framework first learns
a binary representation using side information, in the form of labeled pairs, and then computes the distance as a weighted Hamming
distance using the learned binary representation. A boosting algorithm is presented to efficiently learn the distance function. We
evaluate the proposed algorithm on a mammographic image reference library with an Interactive Search-Assisted Decision Support
(ISADS) system and on the medical image data set from ImageCLEF. Our results show that the boosting framework compares
favorably to state-of-the-art approaches for distance metric learning in retrieval accuracy, with much lower computational cost.
Additional evaluation with the COREL collection shows that our algorithm works well for regular image data sets.

Index Terms—Machine learning, image retrieval, distance metric learning, boosting.

Ç

1 INTRODUCTION

TODAY, medical diagnosis remains both art and science.
Doctors draw upon both experience and intuition, using

analysis and heuristics to render diagnoses [1]. When

doctors augment personal expertise with research, the
medical literature is typically indexed by disease rather
than by relevance to current case. The goal of interactive
search-assisted decision support (ISADS) is to enable
doctors to make better decisions about a given case by
retrieving a selection of similar annotated cases from large
medical image repositories.

A fundamental challenge in developing such systems is
the identification of similar cases, not simply in terms of
superficial image characteristics, but in a medically relevant
sense. This involves two tasks: extracting a representative
set of features and identifying an appropriate measure of
similarity in the high-dimensional feature space. The former
has been an active research area for several decades. The
latter, largely ignored by the medical imaging community,
is the focus of this paper.

In an ISADS system, each case maps to a point in a high-
dimensional feature space and similar cases to the current
case (query) correspond to near neighbors in this space. The
neighborhood of a point is defined by a distance metric, such
as the euclidean distance. Our previous work showed that the
choice of distance metric affects the accuracy of an ISADS
system and that machine learning enables the construction of
effective domain-specific distance metrics [2]. In a learned
distance metric, data points with the same labels (e.g.,

30 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 1, JANUARY 2010

. L. Yang is with Machine Learning Department, School of Computer
Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
PA 15231. E-mail: liuy@cs.cmu.edu.

. R. Jin is with the Department of Computer Science and Engineering, 3115
Engineering Building, Michigan State University, East Lansing,
MI 48824. E-mail: rongjin@cse.msu.edu.

. L. Mummert and R. Sukthankar are with Intel Research, 4720 Forbes Ave.,
Suite 410, Pittsburgh, PA 15213.
E-mail: lily.b.mummert@intel.com, rahuls@cs.cmu.edu.

. A. Goode and M. Satyanarayanan are with the School of Computer Science,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15231.
E-mail: agoode@andrew.cmu.edu, satya@cs.cmu.edu.

. B. Zheng is with the Department of Radiology, University of Pittsburgh
Medical Center, Pittsburgh, PA 15213. E-mail: zengb@upmc.edu.

. S.C.H. Hoi is with the Division of Information Systems, School of
Computer Engineering, Nanyang Technological University, Singapore
639798. E-mail: chhoi@ntu.edu.sg.

Manuscript received 1 Jan. 2008; revised 9 Aug. 2008; accepted 24 Oct. 2008;
published online 10 Nov. 2009.
Recommended for acceptance by J. Matas.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2008-01-0001.
Digital Object Identifier no. 10.1109/TPAMI.2008.273.

0162-8828/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 29, 2010 at 11:27 from IEEE Xplore.  Restrictions apply. 



malignant masses) are closer than data points with different
labels (e.g., malignant versus benign). Thus, the labels of the
near neighbors of the query are likely to be informative.

1.1 Distance Metric Learning with Side Information

Research in distance metric learning is driven by the need to
find meaningful low-dimensional manifolds that capture
the intrinsic structure of high-dimensional data. Distance
metric learning has been successfully applied to a variety of
applications, such as content-based image retrieval [3] and
text categorization [4].

Most distance metric learning techniques can be classified
into two categories: unsupervised distance metric learning
and supervised distance metric learning. The former aims to
construct a low-dimensional manifold where geometric
relationships between most data points are largely pre-
served. Supervised distance metric learning makes use of
class-label information and identifies the dimensions that
are most informative to the classes of examples. A brief
overview of the related work is provided in Section 2.

Learning an effective distance metric with side informa-
tion has recently attracted increasing interest. Typically, the
side information is cast in the form of pairwise constraints
between data elements, and the goal is to identify features
that are maximally consistent with these constraints. In
general, there are two types of pairwise constraints:
1) equivalence constraints specifying that the two given
elements belong to the same class and 2) inequivalence
constraints indicating that the given elements are from
different classes. The optimal distance metric is learned by
keeping the data elements of equivalence constraints close to
each other while separating the data elements of inequiva-
lence constraints apart. A number of approaches have been
developed to learn distance metrics from the pairwise
constraints. We refer to Section 2 for a comprehensive review.

One of the key challenges in learning a distance metric is
its computational cost. This is because many approaches are
designed to learn a full matrix of distance metrics whose size
scales with the square of the data dimension. In addition to
its large size, the requirement that the metric matrix be
positive semidefinite further increases the computational
cost [5]. Although several algorithms have been proposed to
improve the computational efficiency (e.g., [6]), they still
tend to be computationally prohibitive when the number of
dimensions is large. To address the computational issue, we
propose a boosting framework that can efficiently learn
distance metrics for high-dimensional data.

1.2 Semantic Relevance and Visual Similarity

Most distance metric learning algorithms aim to construct
distance functions that are consistent with the given pairwise
constraints. Since these constraints are usually based on the
semantic categories of the data, the learned distance metric
essentially preserves only the semantic relevance among data
points. Thus, a drawback with these approaches is that, when
they are applied to image retrieval problems, images ranked
at the top of a retrieval list may not be visually similar to the
query image, due to the gap between semantic relevance and
visual similarity. For instance, a doughnut and a tire have
similar shapes, yet belong to different concept categories; a
solar car looks almost nothing like a regular car, though
functionally, they both belong to the same object category.
Since, in image retrieval applications, most users seek images

that are both semantically and visually close to the query
image, this requires learning distance functions that preserve
both semantic relevance and visual resemblance. This issue is
of particular importance in medical image retrieval. If the
system were to retrieve images that did not look like the
query, then doctors would be less likely to trust the system; on
the other hand, retrieving images that appear superficially
similar to the query but are semantically unrelated is
undesirable because that could lead doctors toward an
incorrect diagnosis.

We address the challenge by automatically generating
links that pair images with high visual resemblance. These
visual pairs, together with the provided side information, are
used to train a distance function that preserves both visual
similarity and semantic relevance between images. The
trade-off between semantic relevance and visual similarity
can be easily adjusted by the number of visual pairs. A
detailed discussion of how these visual pairs are generated is
given in Section 4.

The remaining paper is organized as follows: Section 2
reviews the work related to ISADS, distance metric learning,
and boosting. Section 3 describes the boosting framework for
distance metric learning. Section 4 presents the application of
the proposed algorithm to retrieval of both medical images
and regular images.

2 RELATED WORK

Over the last decade, the increasing availability of powerful
computing platforms and high-capacity storage hardware
has driven the creation of large, searchable image databases,
such as digitized medical image reference libraries. These
libraries have been used to train and validate computer-
aided diagnosis (CAD) systems in a variety of medical
domains, including breast cancer. However, the value of
CAD in clinical practice is controversial, due to their “black-
box” nature and lack of reasoning ability [7], [8], [9], [10],
[11], despite significant recent progress [12], [13], [14], [15],
[16], [17], [18], [19], [20] both in automated detection and
characterization of breast masses. An alternative approach,
espoused by efforts such as ISADS [2], eschews automated
diagnosis in favor of providing medical professionals with
additional context about the current case that could enable
them to make a more informed decision. This is done by
retrieving medically relevant cases from the reference
library and displaying their outcomes. Earlier work [2]
has demonstrated that learning domain-specific distance
metrics significantly improves the quality of such searches.

In general, methods for distance metric learning fall into
two categories: supervised and unsupervised learning. Since
our work is most closely related to supervised distance metric
learning, we omit the discussion of unsupervised distance
metric learning and refer readers to a recent survey [21].

In supervised distance metric learning, most algorithms
learn a distance metric from a set of equivalence constraints
and inequivalence constraints between data objects. The
optimal distance metric is found by keeping objects in
equivalence constraints close and objects in inequivalence
constraints well separated. Xing et al. [22] formulate
distance metric learning into a constrained convex pro-
gramming problem by minimizing the distance between the
data points in the same classes under the constraint that the
data points from different classes are well separated. This
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algorithm is extended to the nonlinear case by the
introduction of kernels [23]. Local Linear Discriminative
Analysis [24] estimates a local distance metric using the
local linear discriminant analysis. Relevant Components
Analysis (RCA) [25] learns a global linear transformation
from the equivalence constraints. Discriminative Compo-
nent Analysis (DCA) and Kernel DCA [26] improve RCA by
exploring inequivalence constraints and capturing non-
linear transformation via contextual information. Local
Fisher Discriminant Analysis (LFDA) [27] extends classical
LDA to the case when the side information is in the form of
pairwise constraints. Kim et al. [28] provide an efficient
incremental learning method for LDA, by adopting suffi-
cient spanning set approximation for each update step.
Schultz and Joachims [29] extend the support vector
machine to distance metric learning by encoding the
pairwise constraints into a set of linear inequalities.
Neighborhood Component Analysis (NCA) [30] learns a
distance metric by extending the nearest neighbor classifier.
The maximum-margin nearest neighbor (LMNN) classifier
[6] extends NCA through a maximum margin framework.
Yang et al. [31] propose a Local Distance Metric (LDM) that
addresses multimodal data distributions in distance metric
learning by optimizing local compactness and local separ-
ability in a probabilistic framework. Finally, a number of
recent studies [28], [32], [33], [34], [35], [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48], [49] focus on examining
and exploring the relationship among metric learning,
dimensionality reduction, kernel learning, semi-supervised
learning, and Bayesian learning.

Learning distance metrics by a boosting framework was

first presented by Hertz et al. [50], [51]. In addition, in [36],

[37], [52], different boosting strategies are presented to

learn distance functions from labeled data. Although all of

these algorithms employ a boosting strategy to learn a

distance function, our algorithm differs from the existing

work in that earlier algorithms for distance function

learning closely follow AdaBoost [53] without considering

the optimization of the specified objective functions. Some

of the existing methods (e.g., [52]) do not have a well-

specified objective function; therefore, the convergence of

their algorithms and the optimality of the resulting distance

function are unclear. In contrast, our algorithm is based on

the optimization of the objective function specified in our

study. Our contributions include a theoretical analysis

about the convergence condition of our algorithm and the

optimality of the resulting distance function. We believe

that the theoretical analysis of the proposed algorithm is

important and could be instrumental to the performance of

our boosting framework.
We would also like to mention some recent develop-

ments in nonmetric distance learning, such as Generalized

Nonmetric Multidimensional Scaling [54]. Although non-

metric distance learning appears to be more flexible than

metric distance learning, we believe that metric distance,

in general, is not only more intuitive but also more robust

to data noise due to the constraints imposed by the

triangle inequality.

3 A BOOSTING FRAMEWORK FOR DISTANCE

METRIC LEARNING

In this section, we present a novel boosting framework,
termed BDM (we follow the terminology from [2]), that
automatically learns a distance function from a given set of
pairwise constraints. The main idea is to iteratively generate
a set of binary features from the side information. The
learned binary features are used for data representation,
and the distance is computed as a weighted Hamming
distance based on the learned binary data representation.

3.1 Preliminaries

We denote by D ¼ fx1;x2; . . . ;xng the collection of data
points. Each x 2 Rd is a vector of d dimensions. We denote
by X ¼ ðx1;x2; . . . ;xnÞ the data matrix containing the input
features of both the labeled and the unlabeled examples.
Following [22], we assume that the side information is
available in the form of labeled pairs, i.e., whether or not
two examples are in the same semantic category or not. For
convenience of discussion, below we refer to examples in
the same category as “similar” examples and examples in
different categories as “dissimilar” examples. Let the set of
labeled example pairs be denoted by

P ¼ fðxi;xj; yi;jÞjxi 2 D;xj 2 D; yi;j 2 f�1; 0;þ1gg;

where the class label yi;j is positive (i.e., þ1) when xi and xj
are similar, and negative (i.e., �1) when xi and xj are
different. yi;j is set to zero when the example pair ðxi;xjÞ is
unlabeled. Finally, we denote by dðxi;xjÞ the distance
function between xi and xj. Our goal is to learn a distance
function that is consistent with the labeled pairs in P.

Remark 1. Note that standard labeled examples can always
be converted into a set of labeled pairs by assigning two
data points from the same category to the positive class
and two data points from different categories to the
negative class. Similar pairwise class labels are com-
monly employed in multiclass multimedia retrieval
applications [55], [56]. It is important to emphasize that
the reverse is typically difficult, i.e., it is usually difficult
to infer the unique category labels of examples from the
labeled pairs [57].

Remark 2. We label two images in the training set as similar
if they either match in semantic category or if they appear
visually related, as our goal is to simultaneously preserve
both the semantic relevance as well as the visual
similarity. For instance, two images could be defined to
be similar only if they belonged to the same semantic
category or similarity could be defined based on the
images’ visual similarity according to human perception.

3.2 Definition of Distance Function

Before presenting the boosting algorithm, we need to define
a distance function dðxi;xjÞ that is nonnegative and satisfies
the triangle inequality. A typical definition of distance
function used by several distance metric learning algo-
rithms (e.g., [22], [31]) is

dðxi;xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ>Aðxi � xjÞ

q
; ð1Þ
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where A 2 IRd�d is a positive semidefinite matrix that
specifies the distance metric. One drawback with the
definition in (1) arises from its high computational cost
due to the size of A and the constraint that matrix A has to
be positive semidefinite. This is observed in our empirical
study. When the dimensionality d ¼ 500, we find that
estimating A in (1) is computationally very expensive.

In order to address the above problems, we present here
a nonlinear distance function defined as follows:

dðxi;xjÞ ¼
XT
t¼1

�tðftðxiÞ � ftðxjÞÞ2; ð2Þ

where each fðxÞ : IRn ! f�1;þ1g is a binary classification
function (note that we define the image of the binary f to be
f�1;þ1g instead of f0; 1g for a more concise presentation
below) and �t > 0, t ¼ 1; 2; . . . ; T , are the combination
weights. The key idea behind the above definition is to first
generate a binary representation ðf1ðxÞ; . . . ; fT ðxÞÞ by apply-
ing the classification function ffiðxÞgTi¼1 to x. Then, the
distance between xi and xj is computed as a weighted
Hamming distance between the binary representations of the
two examples. Compared to (1), (2) is advantageous in that it
allows for a nonlinear distance function. Furthermore, the
iterative updates of the binary data representation, and
consequently, the distance function, are the key to the
efficient algorithm that is presented in the next section. We
emphasize that although (2) appears to be similar to the
distance function defined in [36], [37], it differs from the
existing work in that each binary function takes into account
all of the features. In contrast, each binary function in [36], [37]
is limited to a single feature and therefore is significantly less
general than the proposed algorithm.

The following theorem shows that the distance function
defined in (2) is indeed a pseudometric, i.e., satisfies all the
conditions of a distance metric except for dðx;yÞ ¼ 0,
x ¼ y. More specifically, we have the following theorem:

Theorem 3.1. The distance function defined in (2) satisfies all the
properties of a pseudometric, i.e., 1) dðxi;xjÞ ¼ dðxj;xiÞ,
2) dðxi;xjÞ � 0, and 3) dðxi;xjÞ � dðxi;xkÞ þ dðxk;xjÞ.

The first and second properties are easy to verify. To
prove the third property, i.e., the triangle inequality, in
Theorem 3.1, we need the following lemma:

Lemma 3.2. The following inequality:

ðfðxiÞ � fðxjÞÞ2 � ðfðxiÞ � fðxkÞÞ2 þ ðfðxkÞ � fðxjÞÞ2 ð3Þ
holds for any binary function f : IRd ! f�1;þ1g.

The proof of the above lemma can be found in
Appendix A. It is straightforward to show the triangle
inequality in Theorem 3.1 using Lemma 3.2 since dðxi;xjÞ is
a linear combination of ðfkðxiÞ � fkðxjÞÞ2.

3.3 Objective Function

The first step toward learning a distance function is to
define an appropriate objective function. The criterion
employed by most distance metric learning algorithms is
to identify a distance function dðxi;xjÞ that gives a small
value when xi and xj are similar and a large value when
they are different. We can generalize this criterion by stating

that, for any data point, its distance to a similar example

should be significantly smaller than the distance to an

example that is not similar. This generalized criterion is cast

into the following objective function, i.e.,

errðPÞ ¼
Xn
i¼1

Xn
j¼1

Xn
k¼1

I½yi;j ¼ �1�I½yi;k ¼ þ1�

I½dðxi;xjÞ > dðxi;xkÞ�;
ð4Þ

where the indicator I½x� outputs 1 when the Boolean

variable x is true and zero otherwise. In the above, we use

I½yi;j ¼ �1� to select the pairs of dissimilar examples, and

I½yi;k ¼ þ1� to select the pairs of similar examples. Every

triple ðxi;xj;xkÞ is counted as an error when the distance

between the similar pair ðxi;xjÞ is larger than the distance

between the dissimilar pair ðxi;xkÞ. Hence, the objective

function errðPÞ essentially measures the number of errors

when comparing the distance between a pair of similar

examples to the distance between a pair of dissimilar

examples.
Although the classification error errðPÞ seems to be a

natural choice for the objective function, it has two short-

comings when used to learn a distance function.

. It is well known in the study of machine learning
that directly minimizing the training error tends to
produce a model that overfits the training data.

. The objective function errðPÞ is a nonsmooth function
due to the indicator function I½dðxi;xjÞ > dðxi;xkÞ�
and therefore is difficult to optimize.

To overcome the shortcomings of errðPÞ, we propose the

following objective function for distance metric learning:

F ðPÞ ¼
Xn
i;j;k¼1

I½yi;j ¼ �1�I½yi;k ¼ þ1�

� exp dðxi;xkÞ � dðxi;xjÞ
� �

:

ð5Þ

The key difference between F ðPÞ and errðPÞ is that

I½dðxiÞ > dðxjÞ� is replaced with exp dðxi;xkÞ � dðxi;xjÞ
� �

.

Since exp dðxi;xkÞ � dðxi;xjÞ
� �

> I½dðxiÞ > dðxjÞ�, by mini-

mizing the objective function F ðPÞ, we are able to

effectively reduce the classification error errðPÞ. The

advantages of using exp dðxi;xkÞ � dðxi;xjÞ
� �

versus

I½dðxiÞ > dðxjÞ� are twofold.

. Since expðdðxi;xkÞ � dðxi;xjÞÞ is a smooth function,
the objective function F ðPÞ can, in general, be
minimized effectively using standard optimization
techniques.

. Similarly to AdaBoost [58], by minimizing the
exponential loss function in F ðPÞ, we are able to
maximize the classification margin and therefore
reduce the generalized classification error according
to [53].

Despite the advantages stated above, we note that the

number of terms in (5) is on the order of Oðn3Þ, potentially

creating an expensive optimization problem. This observa-

tion motivates the development of a computationally

efficient algorithm.
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3.4 Optimization Algorithm

Given the distance function in (2), our goal is to learn
appropriate classifiers fftðxÞgTt¼1 and combination weights
f�tgTt¼1. In order to efficiently learn the parameters and
functions, we follow the idea of boosting and adopt a
greedy approach for optimization. More specifically, we
start with a constant function for distance, i.e.,
d0ðxi;xjÞ ¼ 0, and learn a distance function d1ðxi;xjÞ ¼
d0ðxi;xjÞ þ �1ðf1ðxiÞ � f1ðxjÞÞ2. Using this distance func-
tion, the objective function in (5) becomes a function of �1

and f1ðxÞ, and can be optimized efficiently using bound
optimization [59] as described later. In general, given a
distance function dt�1ðxi;xjÞ that is learned in iteration
t� 1, we learn �t and ftðxÞ by using the following distance
function dtðxi;xjÞ:

dtðxi;xjÞ ¼ dt�1ðxi;xjÞ þ �t ftðxiÞ � ftðxjÞ
� �2

:

Using the above expression for distance function, the
objective function at iteration t, denoted by FtðPÞ, in (5)
becomes a function of �t and ftðxÞ, i.e.,

FtðPÞ ¼
Xn
i;j;k¼1

I½yi;j ¼ �1�I½yi;k ¼ þ1�

� expðdt�1ðxi;xkÞ � dt�1ðxi;xjÞÞ
� expð�t½ðftðxiÞ � ftðxkÞÞ2 � ðftðxiÞ � ftðxjÞÞ2�Þ:

To simplify our expression, we introduce the following
notations:

di;j � dt�1ðxi;xjÞ; ð6Þ

fi � ftðxiÞ; ð7Þ

��i;j � I½yi;j ¼ �1� expð�di;jÞ: ð8Þ

Using the above notations, F ðPÞ is expressed as follows:

FtðPÞ ¼
Xn
i;j;k¼1

��i;j�
þ
i;k expð�tðfi � fkÞ2 � �tðfi � fjÞ2Þ: ð9Þ

Hence, the key question is how to find the classifier fðxÞ and
� that minimizes the objective function in (9). For conve-
nience of discussion, we drop the index t for �t and ftðxÞ, i.e.,
�t ! � and ftðxÞ ! fðxÞ. Now, we apply the bound
optimization algorithm [59] to optimize FtðPÞ with respect
to � and fðxÞ. The main idea is to approximate the difference
between the objective functions of the current iteration and
the previous iteration by a convex upper bound that has a
closed-form solution. As shown in [59], the bound optimiza-
tion is guaranteed to find a local optimal solution.

Like most bound optimization algorithms, instead of
minimizing F ðPÞ in (9), we will minimize the difference
between objective functions from two consecutive itera-
tions, i.e.,

�ð�; fÞ ¼ FtðPÞ � Ft�1ðPÞ; ð10Þ

where f ¼ ðf1; . . . ; fnÞ and Ft�1ðPÞ ¼
Pn

i;j;k¼1 �
�
i;j�
þ
i;k is the

objective function of the first t� 1 iterations. Note that
�ð�; fÞ ¼ 0 when � ¼ 0. This condition guarantees that

when we minimize �ð�; fÞ, the resulting FtðPÞ is smaller
than Ft�1ðPÞ, and therefore, the objective function will
monotonically decrease through iterations. In addition, as
shown in [59], minimizing the bound is guaranteed to find a
locally optimal solution.

First, in the following lemma, we construct an upper
bound for �ð�; fÞ that decouples the interaction between �
and f . Before stating the result, we introduce the concept of
a “graph Laplacian” for readers who may not be familiar
with the term. A graph Laplacian for a similarity matrix S,
denoted by LðSÞ, is defined as L ¼ diagðS1Þ � S, where 1 is
an all-one vector and operator diagðvÞ turns vector v into a
diagonal matrix.

Lemma 3.3. For any � > 0 and binary vector f 2 f�1;þ1gn, the
following inequality holds:

�ð�; fÞ � expð�8�Þ � 1

8
f>Lþf þ expð8�Þ � 1

8
f>L�f ; ð11Þ

where L� and Lþ are the graph Laplacians for the similarity
matrices S� and Sþ, respectively, defined as

S�i;j ¼
1

2
�þi;jð��i þ ��j Þ; Sþi;j ¼

1

2
��i;jð�þi þ �þj Þ; ð12Þ

where ��i is defined as

��i ¼
Xn
j¼1

��i;j: ð13Þ

Recall that��i;j is defined as��i;j ¼ I½yi;j ¼ �1� expð�di;jÞ in (8).
The detailed proof of this lemma is given in Appendix B.

Remark. Since �þi;j / I½yi;j ¼ 1� (8), the similarity S� depends
only on the data points from the must-link pairs
(equivalence constraints). Hence, f>L�f in (11) essentially
measures the inconsistency between the binary vector f
and the must-link constraints. Similarly, f>Lþf in (11)
measures the inconsistency between f and the cannot-link
pairs (inequivalence constraints). Hence, the upper
bound in (11) essentially computes the overall incon-
sistency between the labeled pairs and the binary vector f .

Next, using Lemma 3.3, we derive additional bounds for
�ð�; fÞ by removing �. This result is summarized in the
following theorem.

Theorem 3.4. For any binary vector f 2 f�1;þ1gn, the
following inequality holds:

min
��0

�ð�; fÞ � � 1

8
maxð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f>Lþf

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f>L�f

q
Þ

� �2

ð14Þ

� �
maxð0; f>Lþf � f>L�fÞ
� �2

8nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxðL�Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxðLþÞÞ2

q ; ð15Þ

where �maxðSÞ is the maximum eigenvalue of matrix S.

The proof of this theorem can be found in Appendix C.
In the following discussion, we will focus on minimizing
the upper bound of the objective function stated in
Theorem 3.4, which allows us to reduce the computational
cost dramatically.
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In order to search for the optimal binary solution f

that minimizes the upper bound of �ð�; fÞ, we decide to

first search for a continuous solution for f and then

convert the continuous f into a binary one by comparing

to a threshold b. In particular, we divide the optimization

procedure into two steps:

. searching for the continuous f that minimizes the
upper bound in (15) and

. searching for the threshold b that minimizes the
upper bound in (14) for a continuous solution f .

To differentiate the continuous solution f , we furthermore

denote by f̂ the binary solution. It is important to note that

the two steps use different upper bounds in Lemma 3.3.

This is because the looser upper bound in (15) allows for

efficient computation of continuous solution f , while the

tighter upper bound in (11) allows for a more accurate

estimation of threshold b.
Finally, the optimization problems related to the two

steps are summarized as follows, respectively:

max
f2IRn

f>ðLþ � L�Þf ; ð16Þ

and

max
b2IR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̂>Lþ f̂

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̂>L� f̂

p

s:t: f̂i ¼
1; fi > b;

�1; fi � b:

� ð17Þ

It is clear that the optimal solution to (16) is the maximum

eigenvector of matrix Lþ � L�, and therefore, can be

computed very efficiently. To find the b that optimizes the

problem in (17), it is sufficient to consider f1; f2; . . . ; fn, in

turn, as the candidate solutions.
Given the optimal f ¼ ðf1; . . . ; fnÞ, the next question is

how to learn a classification function fðxÞ to approximate f .

Here, we consider two cases: the linear classifier and the

nonlinear classifier. In the first case, we assume that the

classification function fðxÞ is based on a linear transforma-

tion of x, i.e., fðxÞ ¼ u>x, where u is a projection vector that

needs to be determined. Then, the optimization problem in

(16) is converted into the following problem:

max
u>u¼1

u>XðLþ � L�ÞX>u: ð18Þ

It is not difficult to see that the optimal projection u

that maximizes (18) is the maximum eigenvector of

XðLþ � L�ÞX>. In the second case, we exploit the “kernel

trick.” Specifically, we introduce a nonlinear kernel function

kðx;x0Þ and assume the classification function fðxÞ as

fðxÞ ¼
Xn
i¼1

kðxi;xÞui:

Similarly to the linear case, we calculate the optimal

projection u ¼ ðu1; . . . ; unÞ by computing the maximum

eigenvector of KðLþ � L�ÞK>, where K is a nonlinear

kernel similarity matrix with Ki;j ¼ kðxi;xjÞ. Fig. 1 sum-

marizes the proposed boosted distance metric learning

algorithm of both the linear and the nonlinear cases.

To further ensure that our algorithm is effective in

reducing the objective function despite being designed to

minimize the upper bound of the objective function, we

present the following theorem:

Theorem 3.5. Let ðSþt ; S�t Þ, t ¼ 1; . . . ; T be the similarity

matrices that are computed by running the boosting algorithm

(in Fig. 1) using (12). Let Lþt and L�t be the corresponding

graph Laplacians. Then, the objective function at the T þ 1

iteration, i.e., FTþ1ðPÞ, is bounded as follows:

FTþ1ðPÞ � F0ðPÞ
YT
t¼0

ð1� �tÞ; ð19Þ

where

F0 ¼
Xn
i;j;k¼1

I½yi;j ¼ �1�I½yi;k ¼ þ1�;

�t ¼
½�maxðLþt � L�t Þ�

2

8�maxðSþt þ S�t Þð�maxðLþt Þ þ �maxðL�t ÞÞ
:

The proof of this theorem can be found in Appendix D.
Evidently, we note that � is bounded between ð0; 1=8Þ. As
revealed in the above theorem, although we only aim to
minimize the upper bound of the objective function, the
upper bound of the objective function decreases by a factor
of 1� �t in each iteration, and therefore, the objective
function will, in general, decrease rapidly. This claim is
supported by our experimental results below.

3.5 Preserving Visual Similarity

As pointed out in Section 1, most distance metric learning
algorithms learn a distance metric that only preserves the
semantic similarity without taking into account the visual
resemblance between images. Fig. 2 shows a pair of two
images whose distance is very “small” according to a
distance metric learned from the labeled examples. Note
that, although both images are malignant according to the
medical annotation, their appearances are rather different.
By retrieving images that are only medically relevant, the

YANG ET AL.: A BOOSTING FRAMEWORK FOR VISUALITY-PRESERVING DISTANCE METRIC LEARNING AND ITS APPLICATION TO... 35

Fig. 1. Distance metric learning algorithm in a boosting framework.
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system is poorly suited for assisting doctors in providing
the necessary context for informed decision making.

To address this problem, we introduce additional pair-
wise constraints to reflect the requirement of visual
similarity. These additional pairwise constraints, referred
to as “visual pairs,” are combined with the equivalence and
inequivalence constraints to train a distance metric using the
boosting algorithm that is described above. Ideally, the
visual pairs would be specified manually by domain experts.
However, in the absence of such labels, we represent an
image by a vector of visual features and approximate the
visual pairs by the pairs of images that fall within a small
euclidean distance in the space of visual features. By
incorporating the visual pairs as a part of the pairwise
constraints, the resulting distance function will reflect not
only the semantic relevance among images, but also the
visual similarity between images. Furthermore, the trade-off
between visual and semantic similarity in learning a distance
function can be adjusted by varying the number of visual
pairs. As shown in our experiments, employing a large
number of visual pairs biases the learned metric toward
preserving visual similarity. Finally, we note that the same
set of low-level image features is used to assess the medical
relevance of images and to generate visual pairs. The key
difference is that, in generating visual pairs, every feature is
treated with equal importance; in contrast, the semantic
relevance between two images is judged by a weighted
distance, and therefore, only a subset or combinations of
image features determines the semantic relevance of images.

We can also interpret visual pairs from the viewpoint of
Bayesian learning. In particular, introducing visual pairs
into our learning scheme is essentially equivalent to
introducing a Bayesian prior for the target distance
function. Note that 1) the same set of visual features is
used to judge the semantic relevance and visual similarity
and 2) visual pairs are generated by the euclidean distance.
Hence, the introduction of visual pairs serves as a
regularizer for the distance function to be close to the
euclidean distance. We emphasize the importance of
regularization in distance metric learning, particularly
when the number of pairwise constraints is limited. Since
most distance functions involve a large number of para-
meters, overfitting is likely in the absence of appropriate
regularization; resulting distance functions are likely to fit
the training data very well, yet will fail to correctly predict
the distances between the examples in the testing set. This
issue is examined further in our experiments below.

4 APPLICATIONS

This section presents evaluations of the proposed boosting
framework for learning distance functions in the context of
both medical and nonmedical image retrieval applications.
We denote the basic algorithm by BDM and the algorithm
augmented with automatically generated visual pairs as
BDM+V. The first set of experiments employs our method
in an ISADS application for breast cancer. The ISADS
application allows a radiologist examining a suspicious
mass in a mammogram to retrieve and study similar masses
with outcomes before determining whether to recommend a
biopsy. We first describe the image repository used by the
application. We then empirically examine and evaluate
different properties of the proposed algorithm, including
the convergence of the proposed algorithm, the effect of
visual pairs on the performance of image retrieval and
classification, and the impact of training set size. Finally, we
also evaluate the proposed algorithm using the medical
image data set from ImageCLEF [60]. To demonstrate
BDM+V’s generalized efficacy on regular image data sets
beyond the medical domain, we also present retrieval and
classification results on the standard Corel data set.

4.1 Reference Library: UPMC Mammograms
Data Set

We used an image reference library based on digitized
mammograms created by the Imaging Research Center of
the Department of Radiology at the University of Pittsburgh.
The library consists of 2,522 mass regions of interest (ROI)
including 1,800 pathology-verified malignant masses and
722 CAD-cued benign masses. Each mass ROI is represented
by a vector of 38 morphological and intensity distribution-
related features, within which nine features are computed
from the whole breast area depicted in the digitized
mammogram (global features) and the remaining features
are computed from the segmented mass region and its
surrounding background tissue (local features). The ex-
tracted visual features are further normalized by the mean
and the standard deviation computed from the 2,522 selected
mass regions in the image data set. A detailed description of
the features, the normalization step, and region segmenta-
tion are described in [61], [62]. Fig. 3 shows a significant
overlap between the two classes in the space spanned by the
first three principal eigenvectors computed by Principal
Component Analysis (PCA). This result illustrates the
difficulty in separating classes using simple methods.
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Fig. 3. Three-dimensional PCA representation of the malignant (red)

class and benign (blue) class.

Fig. 2. Two images with the same semantic label (malignant masses in

this example) can look very different visually. In an ISADS application, it

is important for the system to retrieve examples that are both visually

and semantically similar.
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4.2 Experiment Setup

We randomly select 600 images from the reference library to
serve as the training data set. Among them, 300 images
depict malignant masses and 300 depict CAD-generated
benign mass regions. The remaining 1,922 images are used
for testing. Through these experiments, unless specified, the
linear BDM (described in Fig. 1) is used for evaluation.

We evaluate the proposed algorithm in the context of
ISADS using two metrics. The first metric, classification
accuracy, indicates the extent to which malignant images
can be detected based on the images that are retrieved by
the system [18], [19]. We compute classification accuracy by
the K Nearest Neighbor (KNN) classifier: Given a test
example x, we first identify the K training examples that
have the shortest distance to x, where distance is computed
using the metric learned from training examples; we then
compute the probability that x is malignant based on the
percentage of its K nearest neighbors that belong to the
malignant class. These probabilities for test examples are
used to generate the Receiver Operating Characteristic
(ROC) curve by varying the threshold of the probability for
predicting malignancy. Finally, the classification accuracy is
assessed by the area under the ROC curve. As has been
pointed out by many studies, the ROC curve is a better
metric for evaluating classification accuracy than error rate,
particularly when the populations of classes are skewed.
Cross validation has indicated that the optimal number of
nearest neighbors (i.e., K) in KNN is 10. Every experiment
is repeated 10 times with randomly selected training images
and the final result is computed as an average over these
10 runs. Both the mean and standard deviation of the area
under the ROC curve are reported in the study.

The second metric, retrieval accuracy, reflects the
proportion of retrieved images that are medically relevant
(i.e., in the same semantic class) to the given query [16], [17].
Unlike classification accuracy where only a single value is
calculated, retrieval accuracy is computed as a function of
the number of retrieved images and thus provides a more
comprehensive picture for the performance of ISADS. We
evaluate retrieval accuracy in a leave-one-out manner, i.e.,
using one medical image in the test data set as the query
and the remaining images in the test data set as the gallery
when we conduct the experiment of image retrieval. For a
given test image, we rank the images in the gallery in the

ascending order of their distance to the query image. We
define the retrieval accuracy for the ith test query image at
rank position k, denoted by rðqki Þ, as the percentage of the
first k ranked images that share the same semantic class
(i.e., benign or malignant) as the query image:

rðqki Þ ¼
Pk

j¼1 I½yi ¼ yj�
k

; ð20Þ

where j in the summation refers to the indices of the top
k ranked images. The overall retrieval accuracy at each rank
position is an average over all images in the testing set.

4.3 Empirical Evaluation of the Proposed Algorithm
(BDM+V)

In this section, we study the convergence of the proposed
algorithm, the performance of the proposed algorithm for
both image classification and retrieval, and, furthermore,
the effect of visual pairs on image retrieval.

4.3.1 Convergence of the Objective Function

Fig. 4a shows the reduction of the objective function (5) and
Fig. 4b shows the reduction of the error rate errðPÞ in (4),
both as a function of the number of iterations. The “number
of iterations” in Fig. 4 corresponds to the “T” from (2) and
Fig. 1. Recall that the error rate errðPÞmeasures the number
of errors when comparing the distance between a pair of
similar examples to the distance between a pair of
dissimilar examples. We also compare the change of the
two in the same figure (see Fig. 4c). The iteration stops
when the relative change in the objective function is smaller
than a specified threshold (10�5 in our study).

First, we clearly observe that the value of the objective
function drops at a rapid rate, which confirms the theoretic
analysis stated in Theorem 3.5. Second, we observe that the
overall error rate is also reduced significantly, and indeed,
is upper bounded by the objective function in (5), as
discussed in Section 3, although the bound is rather loose.

4.3.2 Effect of Visual Pairs

We first evaluate how the visual pairs affect the retrieval
accuracy of BDM. Fig. 5 summarizes the retrieval accuracy
of BDM+V and BDM (i.e., with and without using the visual
pairs). For the purpose of comparison, we also include the
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Fig. 4. Reduction of objective function and error rate over iterations (312 iterations in total). (a) Objective function. (b) Error rate errðPÞ. (c) Objective

function versus error rate errðPÞ.
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retrieval accuracy for the euclidean distance. The standard
deviation in the retrieval accuracy is illustrated by the
vertical bar. First, we observe that the retrieval accuracy of
both variants of BDM exceeds that of the euclidean distance
metric, indicating that BDM is effective in learning appro-
priate distance functions. Second, we observe that the
incorporation of visual pairs improves retrieval accuracy.
This improvement can be explained from the viewpoint of
Bayesian statistics since the visual pairs can be viewed as a
Bayesian priors, as discussed above. Hence, BDM with
visual pairs can be interpreted as Maximum A Posterior
(MAP), while BDM without visual pairs can somehow be
interpreted as Maximum-Likelihood Estimation (MLE). It is
well known that MAP-based approaches typically outper-
form MLE-based approaches. This is particularly true when
the number of training examples is not large in comparison
to the number of parameters, allowing the target classifica-
tion model to overfit the training examples. By introducing a
Bayesian prior, we are able to regularize the fitting of the
target classification model for the given training examples,
thus alleviating the problem of overfitting.

In the second experiment, we evaluate the effect of the
visual pairs on classification accuracy. We compute the area
under the ROC curves (AUR), which is a common metric
for evaluating classification accuracy. Table 1 shows the
AUR results for BDM+V and BDM (i.e., with and without
visual pairs) and the euclidean distance metric. Similarly to
the previous experiment, we observe that areas under the

ROC curves of the two variants of BDM are significantly
larger than that of the euclidean distance, showing that
BDM achieves better classification accuracy than the
euclidean distance metric. Similarly to retrieval accuracy,
we observe that the incorporation of visual pairs noticeably
improves the classification accuracy.

The final experiment in this section is designed to study
how different numbers of visual pairs affect the classifica-
tion and retrieval performance. We vary the size of
neighborhood from 1, 5, 10, and 15 to 20 when generating
visual pairs. The larger the neighborhood size, the more
visual pairs are generated. Fig. 6 and Table 2 show the
retrieval accuracy and the area under ROC curves for
BDM+V using different neighborhood sizes for generating
visual pairs. We observe that the five different neighbor-
hood sizes result in similar performance in both classifica-
tion and retrieval. We thus conclude that BDM+V is overall
insensitive to the number of visual pairs. Note that our
study is limited to a modest range of visual pairs. The size
of the euclidean near neighborhood should be controlled;
otherwise, this approximation fails to capture visual
similarity between images.

4.4 Comparison to State-of-the-Art Algorithms for
Distance Metric Learning

We compare BDM+V to three state-of-the-art algorithms for
learning distance functions and distance metrics: Linear
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Fig. 5. Comparison of retrieval accuracy. The learned metrics

significantly outperform euclidean; adding visual pairs (BDM+V)

consistently improves retrieval.

TABLE 1
Comparison of the Classification Accuracy

The learned metrics result in better classification and the addition of
visual pairs (BDM+V) is significant.

TABLE 2
Classification Results for BDM+V Using Different Numbers

of Near Neighbors for Visual Pair Generation

BDM+V is relatively insensitive to the number of visual pairs used.

Fig. 6. Retrieval accuracy curves for BDM+V using different numbers of

near neighbors to generate visual pairs. Retrieval is relatively insensitive

to the number of visual pairs used in BDM+V.
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Boost Distance (denoted as “DistBoost”) [50], Large Margin

Nearest Neighbor Classifier (denoted as “LMNN”) [6], and
Neighborhood Component Analysis (denoted as “NCA”)

[30]. Euclidean distance is included as a comparative

reference (denoted as “euclidean”).

4.4.1 Results on UPMC Mammograms Data Set

Fig. 7 shows the retrieval accuracy curves for BDM+V and

the three comparative algorithms for distance metric

learning. First, we observe that all of the distance learning
algorithms outperform the euclidean distance metric except

for the DistBoost algorithm which performs considerably

worse than the euclidean distance metric. Second, BDM+V

and NCA perform consistently better than the other
algorithms across all the ranking positions. Table 3 shows

the area under the ROC curve for BDM+V and the baseline

methods. The proposed algorithm has the largest area

under the ROC curve, followed by LMNN, euclidean, NCA,
and finally, DistBoost. It is interesting to observe that

although NCA achieves a better retrieval accuracy than the

euclidean distance, its classification accuracy is consider-

ably lower than the euclidean distance.

4.4.2 Results on the ImageCLEF Data Set

To generalize the performance of the proposed algorithm,
we further evaluate the proposed algorithm on the medical

image data set provided by the ImageCLEF conference
[60]. This is a popular benchmark data set used to evaluate
automated medical image categorization and retrieval. It
consists of 15 medical image categories with a total of
2,785 images. All of the medical images in this experiment
are X-ray images collected from plain radiography. Fig. 8
shows a few examples of medical images in our testbed.
The category information can be found from the con-
ference Web site.

Following the typical practice in ImageCLEF, we process
each medical image using a bank of Gabor wavelet filters
[63] to extract texture features. More specifically, each
image is first scaled to the size of 128� 128. Then, the Gabor
wavelet transform is applied to the scaled image at five
scale levels and eight orientations, which results in a total of
40 subimages. Every subimage is further normalized into
8� 8 ¼ 64 features, which results in a total of 64� 40 ¼
2;560 visual features for each medical image. PCA is used to
reduce the dimensionality from 2,560 to 200. We select a
total of 1,100 images from 11 categories in the ImageCLEF
for our experiments. We randomly selected 40 percent
images for the training data set and the remaining images
serve as test queries.

The retrieval accuracy, defined in (20), is reported in
Fig. 9. It is interesting to observe that NCA, which achieves
high retrieval accuracy on the UPMC Mammogram Data
Set, now performs significantly worse than the euclidean
distance metric. On the other hand, DistBoost, which
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Fig. 8. Examples of medical images in the ImageCLEF testbed.

Fig. 9. Retrieval accuracy by different distance metric learning

algorithms on the ImageCLEF data set.

Fig. 7. Retrieval accuracy of distance metric learning algorithms on the

mammogram data set.

TABLE 3
Classification Accuracy on the Mammogram Data Set
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performed poorly on the UPMC data set, is one of the best
algorithms. This result indicates that some of the state-of-
the-art distance metric learning algorithms are sensitive to
the characteristics of data sets and their performance is
usually data-dependent. In contrast, BDM+V achieves
good retrieval accuracy on both data sets, indicating the
robustness of the proposed algorithm.

We also conduct the classification experiment using the
ImageCLEF data set. Table 4 summarizes the area under the
ROC curve for all the 11 classes separately. As we observe,
for most classes, BDM+V achieves a performance that is
comparable to LMNN, the best among the five competitors.

4.5 Computational Cost

As discussed in Section 1, high computational cost is one of
the major challenges in learning distance metrics. Many
approaches aim to learn a full matrix and therefore become
computationally expensive as the dimensionality grows.
BDM+V reduces the computational cost by learning a
binary representation in a boosting framework, from which
a weighted Hamming distance is computed. Table 5 shows
the running time of the proposed algorithm and the
baseline methods, for different dimensionality using the
ImageCLEF data set. Note that the different numbers of
dimensions are created by applying PCA to the images in
the database and selecting the top eigenvectors for
representing images.

First, the proposed algorithm is considerably faster than
the three competitors when each image is represented by
more than 200 features. Second, the time consumed by the

proposed algorithm does not increase dramatically as the

number of dimensions increases from 100 to 500; in contrast,

for the three baseline algorithms, we observe a significant

increase in the computational time as the dimension grows

beyond 300. For instance, DistBoost is impressively fast

(524.1 seconds) with 200 dimensions but falls behind

BDM+V when the dimension increases to 300, and this gap

widens in the case of 400 and 500 dimensions. NCA is the

most computationally expensive among the four competi-

tors, starting at 1,896.1 seconds for 100 dimensions and

rising rapidly to end at 84,016.9 seconds for 500 dimensions.

From these experiments, it is evident that, for all of the

baseline methods, the efficiency issue becomes severe with

higher dimensionality. In contrast, due to its efficient design,

the computational time for the proposed method increases

only linearly with respect to the dimensionality.

4.6 Regular Image Retrieval on the COREL Data Set

To demonstrate the efficacy of BDM+V for regular image
retrieval, we test the proposed algorithm on the COREL
data set. We randomly choose 10 categories from the
COREL data set and randomly select 100 examples from
each category, resulting in an image collection of
1,000 images. Each image is represented by 36 different
visual features that belong to three categories: color, edge,
and texture. The details of the visual feature used to
represent the COREL data set can be found in [31].

The retrieval accuracy is reported in Fig. 10. Although

the proposed algorithm BDM+V is outperformed overall

by LMNN and DistBoost, we observe that BDM+V

surpasses DistBoost at the first rank and outperforms

LMNN after rank 14.
Table 6 reports the area under the ROC curve for all the

11 classes separately. BDM+V performs comparably to
LMNN, which achieves the best results across the 10 classes.
The other three competitors, i.e., DistBoost, NCA, and
euclidean, often perform significantly worse than LMNN
and the proposed algorithm. Moreover, the standard
deviation of BDM+V and LMNN is, in general, smaller
than the three baselines, indicating the robustness of the
proposed algorithm.
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TABLE 5
Computation Time (Seconds) for the

Proposed and Baseline Algorithms as the
Number of Dimensions Varies from 100 to 500

TABLE 4
Area under ROC Curve on the ImageCLEF Data Set, Obtained by the Proposed Baseline Algorithms
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5 CONCLUSION AND DISCUSSIONS

In this paper, we present a novel framework that learns a

distance metric from side information. Unlike the other

distance metric learning algorithms that are designed to

learn a full matrix for distance metric, and therefore, suffer

from computational difficulty, the proposed algorithm first

learns a binary representation for data and then computes

the weighted Hamming distance based on the learned

representation. A boosting algorithm is presented to

facilitate the learning of the binary representation and the

weights that are used to form the Hamming distance. In

addition to the computational efficiency, another advantage

of the proposed algorithm is that it is able to preserve both

the semantic relevance and the visual similarity. This is

realized through the introduction of links that pair visually

similar images. By training over the combination of visual

pairs and pairwise constraints that are generated based on

semantic relevance, the resulting distance metric is able to

preserve both the visual similarity and semantical rele-

vance. In contrast, the previous work on distance metric

learning tends to focus only on the semantic relevance. We

demonstrate the effectiveness of the proposed algorithm in
the context of an ISADSs system for breast cancer and on
two standard image data sets (ImageCLEF and Corel).

APPENDIX A

PROOF OF LEMMA 3.2

To prove the inequality, we consider the following two
cases:

. fðxiÞ ¼ fðxjÞ: In this case, the inequality in (3) holds
because the left side of the inequality is zeros and the
right side is guaranteed to be nonnegative.

. fðxiÞ 6¼ fðxjÞ: In this case, fðxkÞ will be equal to
either fðxiÞ or fðxjÞ since fðxÞ is a binary function.
Hence, both sides of the inequality are equal to 4,
and therefore, the inequality in (3) holds.

APPENDIX B

PROOF OF LEMMA 3.3

To prove the inequality in (11), we first bound expð�ððfi �
fkÞ2 � ðfi � fjÞ2ÞÞ by the following expression:

expð�ððfi � fkÞ2 � ðfi � fjÞ2ÞÞ

� expð2�ðfi � fkÞ2Þ
2

þ expð�2�ðfi � fjÞ2Þ
2

:

Since f2
i ¼ 1 for any example xi, we have

ðfi � fjÞ2

4
þ ðfi þ fjÞ

2

4
¼ 1:

Hence, expð2�ðfi � fjÞ2Þ can be upper bounded as follows:

expð2�ðfi � fjÞ2Þ

¼ exp 8�
ðfi � fjÞ2

4
þ 0� ðfi þ fjÞ

2

4

 !

� ðfi � fjÞ
2

4
expð8�Þ þ ðfi þ fjÞ

2

4

¼ ðfi � fjÞ
2

4
ðexpð8�Þ � 1Þ þ 1:
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TABLE 6
Area under the ROC Curve on the Corel Data Set, Obtained by the Proposed and Baseline Algorithms

Fig. 10. Retrieval accuracy on the Corel data set.
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Using the above inequality, we have the objective

function F ðPÞ in (9) upper bounded as follows:

F ðPÞ �
Xn
i;j;k¼1

��i;j�
þ
i;k

¼
Xn
i;j;k¼1

��i;j�i;kðexpð�ðfi � fjÞ2 � �ðfi � fkÞ2Þ � 1Þ

� expð�8�Þ � 1

8

Xn
i;j¼1

��i;j
Xn
k¼1

�þi;k

 !
ðfi � fjÞ2

þ expð8�Þ � 1

8

Xn
i;j¼1

�þi;j
Xn
k¼1

��i;k

 !
ðfi � fjÞ2

¼ expð�8�Þ � 1

8
f>Lþf þ expð8�Þ � 1

8
f>L�f :

The last step of the above derivation is based on the

following equality:

f>LðSÞf ¼
Xn
i;j¼1

Si;jðfi � fjÞ2:

Finally, noting that ~F ðPÞ, i.e., the objective function of

previous iteration, is equal to
Pn

i;j;k¼1 �
�
i;k�

þ
i;j, we have

�ð�; fÞ ¼ F ðPÞ � ~F ðPÞ upper bounded as follows:

�ð�; fÞ � expð�8�Þ � 1

8
f>Lþf þ expð8�Þ � 1

8
f>L�f :

APPENDIX C

PROOF OF THEOREM 3.4

We first denote by gð�; fÞ the right-hand side of the

inequality in (11), i.e.,

gð�; fÞ ¼ expð�8�Þ � 1

8
f>Lþf þ expð8�Þ � 1

8
f>L�f :

Note that gð�; fÞ is a convex function of parameter �. We

then compute min��0gð�; fÞ by setting the first order

derivative of � to be zero, i.e.,

@gð�; fÞ
@�

¼ � expð�8�Þf>Lþf þ expð8�Þf>L�f ¼ 0:

We obtain the optimal � by solving the above equation,

which is

� ¼ max 0;
1

16
log f>Lþf
� �

� 1

16
log f>L�f
� �� �

:

Substituting the above expression for �, we have

min
��0

gð�; fÞ � � 1

8

�
max

�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f>Lþf

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f>L�f

p ��2

¼ �
maxð0; f>Lþf � f>L�fÞ
� �2

8ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f>Lþf
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f>L�f
p

Þ2

� �
maxð0; f>Lþf � f>L�fÞ
� �2

8nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxðL�Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxðLþÞ

p
Þ2
:

Since �ð�; fÞ � gð�; fÞ, we have the bound in (15).

APPENDIX D

PROOF OF THEOREM 3.5

According to Theorem 3.4, we have

Ftþ1ðPÞ
FtðPÞ

� 1� ½maxð0; f>ðLþ � L�ÞfÞ�2

8nFtðPÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxðL�t Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxðLþt Þ

p
Þ2
: ð21Þ

Since we choose f to maximize the fðLþt � L�t Þf , we have

maxð0;max
f

f>ðLþt � L�t ÞfÞ ¼ �maxðLþt � L�t Þ: ð22Þ

The above derivation uses the following fact:

�maxðLþt � L�t Þ �
1

n
ð1>ðLþt � L�t Þ1Þ ¼ 0:

We can further simplify the bound in (21) by having

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxðL�t Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxðLþt Þ

q �2 � 2ð�maxðL�t Þ þ �maxðLþt ÞÞ:
ð23Þ

Finally, we can upper bound FtðPÞ as follows:

FtðPÞ ¼
Xn
i;j;k¼1

�i;j�i;k ¼
1

2
1>ðSþt þ S�t Þ1 �

1

2
�maxðSþt þ S�t Þ:

ð24Þ

By putting the inequalities in (22), (23), and (24), we have

Ftþ1ðPÞ
FtðPÞ

� 1� ½�maxðLþt � L�t Þ�
2

8ð�maxðSþt þ S�t ÞÞð�maxðLþt Þ þ �maxðL�t ÞÞ
¼ 1� �t:

Using the above inequality, we can bound FTþ1ðPÞ as

follows:

FTþ1ðPÞ ¼ F0ðPÞ
YT
t¼0

Ftþ1ðPÞ
FtðPÞ

� F0ðPÞ
YT
t¼0

ð1� �tÞ:
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