
Forensic Video Reconstruction

Larry Huston†

larry.huston@intel.com
Rahul Sukthankar†‡

rahul.sukthankar@intel.com

Jason Campbell†‡

jason.d.campbell@intel.com
Padmanabhan Pillai†

padmanabhan.s.pillai@intel.com

†Intel Research Pittsburgh ‡School of Computer Science
417 S. Craig Street Suite 300 Carnegie Mellon University

Pittsburgh, PA 15213 Pittsburgh, PA 15213
U.S.A. U.S.A.

ABSTRACT
This paper describes an application that enables quick reconstruc-
tion of interconnected events, sparsely captured by one or more
surveillance cameras. Unlike related efforts, our approach does not
require indexing, advance knowledge of potential search criteria,
nor a solution to the generalized object-recognition problem. In-
stead, we strategically pair the intelligence and skill of a human in-
vestigator with the speed and flexibility of a parallel image search
engine that exploits local storage and processing capabilities dis-
tributed across large collections of video recording devices. The
result is a system for fast, interactive, brute-force video searching
which is both effective and highly scalable.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and Retrieval—
Information Search and Retrieval; C.3 [Computer Systems Orga-
nization]: Special-Purpose and Application-Based Systems; I.4.9
[Computing Methodologies]: Image Processing and Computer
Vision—Applications

General Terms
Algorithms, Human Factors, Performance

Keywords
video retrieval, active storage, interactive search

1. INTRODUCTION
As surveillance cameras proliferate, the resulting glut of video

poses a crippling data interpretation challenge. Present approaches
to surveillance video analysis rely on linear searches performed by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VSSN’04, October 15, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-934-9/04/0010 ...$5.00.

human beings to interpret and correlate observed activity between
multiple sources. This technique rapidly becomes intractable as the
number of deployed cameras increases. For forensic reconstruction
of events, such as crime scenes, these approaches will always be
too slow to provide real-time guidance to investigators in a rapidly-
developing situation.

Researchers in a number of fields are pursuing a variety of par-
tial solutions to the above problems; many commercial surveillance
video recorders utilize extreme temporal and data compression to
reduce storage requirements and search time, but in doing so dis-
card potentially important video frames from the outset and pro-
vide no alternative to linear human search. Sensor network ap-
proaches [9,12,13] address the question of adapting a collection of
data gathering nodes or cameras to look for particular patterns, but
are continuous query systems which do not archive raw source data
(video) nor provide facilities for ex post searching except as antic-
ipated by prior queries. Content-based image retrieval [2, 5] and
object detection techniques [18, 20] offer a number of potentially
interesting domain-specific classifiers and recognizers, though no
algorithm offers a general resolution to the object recognition prob-
lem, and most algorithms are too computationally expensive to run
on every frame of surveillance video (e.g., the Blobworld [2] im-
age segmentation algorithm takes more than a minute to process
a single frame on modern hardware). Image indexing in general,
whether indices are built by machines or by humans, can offer fast
response to queries, but only by increasing the cost of video ac-
quisition and only when potential query criteria can be identified
in advance. Recent research in video surveillance and monitoring
(VSAM) [3,7] addresses online image understanding, object recog-
nition, and tracking. In this paper we focus instead on searching
raw video data. Any advances that add semantic information to the
video data as it is captured are complementary to our approach, and
this additional information has the potential to make our searches
more efficient and fruitful.

We propose a new approach to surveillance video analysis which
combines the interactive use of a human investigator’s skill with
the speed and flexibility offered by the automated, highly parallel,
brute-force application of image processing techniques. Interac-
tion with a human investigator is essential because fully-automatic
extraction of semantic content from images remains significantly
inferior to human performance, despite decades of research in com-
puter vision and image processing. For the foreseeable future, the
user should be a key component of any forensic video reconstruc-

tion system. Automatic image processing could best be used to
eliminate clearly irrelevant data, reducing the amount of informa-
tion presented to the user, and utilizing the human investigator’s
limited attention more effectively. Large-scale parallelism is re-
quired in order to permit quick searching of a large and grow-
ing number of cameras and to enable a distributed search to exe-
cute close to data storage locations where it will be unhindered by
WAN/MAN/Wireless bandwidth limitations. Finally, brute-force
search (as opposed to indexing) is unavoidable in surveillance video
analysis because search criteria will generally not be known until
after an incident has been recorded. We have implemented our ap-
proach in VideoFerret, an application that leverages recent work in
automated, highly parallel, brute-force image search [10]. This is
integrated into a user interface that emphasizes flexibility, concur-
rency, fast response times, early presentation of partial results, and
spatial and temporal visualization techniques.

This paper’s novelty lies not in its image processing algorithms,
nor in any efficient scheme for indexing the data, but rather in the
ability to perform user-defined queries on unstructured surveillance
data and to visualize events through time and across multiple cam-
eras. Our approach to the forensic video reconstruction problem
enables both human and computer resources to tackle aspects that
are best suited to their abilities: the user can focus on interpreting
and correlating semantic information while the computer tackles
the tedious task of search and organizing large volumes of raw data.

The remainder of this paper is organized as follows. Section 2
explains the general use scenario which has motivated the design
of VideoFerret. Section 3 casts forensic video reconstruction as a
distributed video search problem and describes our approach more
formally. Section 4 describes our forensic video reconstruction ap-
plication in more detail. Section 5 describes the underlying im-
plementation. Section 6 presents preliminary results. Section 7
concludes the paper.

2. USAGE SCENARIO
Consider the following scenario: A masked gunman commits a

violent bank robbery and escapes in an unknown getaway car be-
fore the police arrive on the scene. The crime was recorded on
the bank’s security cameras and nearby public areas were pho-
tographed by numerous surveillance cameras. The police would
like to understand what took place by analyzing this data — hope-
fully quickly enough to predict probable current locations of the
suspect.

Using current approaches, all of the data would be gathered in
a centralized location and manually searched. Investigators would
first collect video from cameras which may have recorded relevant
material — a process which might itself take days — and then
view each video to attempt to manually reconstruct the chronol-
ogy of events surrounding the crime. Even with accelerated video
playback this process will never be quick enough to offer real-time
guidance to police immediately following a crime.

This paper presents a system that enables investigators to search
surveillance video using real-time, interactive, content-based im-
age retrieval techniques which execute in parallel across numerous
active video storage devices (each connected to one or more asso-
ciated cameras). This type of adaptive search provides two advan-
tages: First, it makes more efficient use of an investigator’s time by
leveraging computer vision techniques and highly parallel brute-
force search to eliminate irrelevant data, enabling a more thorough
investigation in the available time. Second, it allows more timely
access to relevant portions of the surveillance data, which can assist
police in responding quickly during unfolding events.

Using our application, VideoFerret, the investigator scans the

video taken at the bank and selects a few images that show the
masked robber. These images are used to build a query for the par-
ticular clothing (color and visual texture) worn by the suspect, and
this query is sent to active storage devices [1, 11, 15] attached to
surveillance cameras. Each of these devices searches its recent his-
tory of digital images and video for people whose clothing matches
the query. Several respond quickly and the investigator browses
the partial results, rejecting those that are unlikely to be the sus-
pect. One of the videos fortuitously shows the suspect getting into
an escape vehicle. The investigator is able to create a second, con-
current query for vehicles of this type. Another camera spots the
same vehicle running a red light several miles away, and this en-
ables the investigator to focus the search on a particular neighbor-
hood. Meanwhile, the clothing search has returned thousands of
hits in the city. By focusing on the hits in the selected neighbor-
hood, the investigator is able to reduce the number to a manageable
size. Several of the people appear similar to the suspect in size and
build (an evaluation made by the investigator, as it is too sophisti-
cated for the system’s image processing algorithms). Some of the
hits also match the vehicle profile, and further manual examination
shows that a camera has spotted the suspect alighting from the get-
away car. The investigator aborts the extraneous searches and uses
VideoFerret to track this individual forward through time. Soon,
the investigator feels sufficiently confident to send police vehicles
to the suspect’s predicted location.

3. DISTRIBUTED VIDEO SEARCH
The forensic video reconstruction problem can be formulated

as follows. A large number of geographically-distributed sensing
nodes collect and store images. Each sensing node consists of a
camera, a processor for executing searches, persistent storage, and
a network interface. The investigator is equipped with a computer
that runs the VideoFerret application and connects to the sensing
nodes (see Figure 1). The queries posed to the system cannot be
specified a priori because they will depend on specific details rele-
vant to the crime scene. For example, for one crime scene, investi-
gators may wish to search for a specific car; for another, they may
wish to find people loitering near an ATM.

Traditional image retrieval approaches pre-process data and build
indices. This is impractical for forensic video reconstruction for
several reasons. First, many algorithms cannot keep pace with the
rate at which new data is generated. Second, the majority of images
will never be searched before they expire, so the effort involved in
pre-processing this data is wasted. Third, the high dimensionality
of the data and lack of a priori knowledge about the query pre-
cludes the use of many indexing schemes.

To address these issues, we employ brute-force search [10] of
the raw data in conjunction with any semantic attributes that can be
computed as the data is acquired. Brute-force search has received
little attention because of its perceived impracticality for perfor-
mance reasons. We have built an infrastructure, Diamond, that ad-
dresses many performance challenges associated with brute-force
search. Diamond leverages the natural parallelism of the search
problem by executing application-specific search code at each stor-
age device instead of processing the data at a centralized site. This
is detailed in Section 5.2.

We believe that forensic video reconstruction searches should be
interactive because fully-automatic extraction of semantic content
from images remains unattainable with the current state of the art in
computer vision and image processing. For the foreseeable future,
the user should be a key component of any forensic video recon-
struction system. However, image processing can be used to screen
out clearly irrelevant data, reducing the amount of information pre-

CPU

Sensor Node

CPU

Sensor Node

CPU

Sensor Node

CPU

Sensor Node

CPU

Sensor Node

Host

 Computer

Figure 1: System Overview - the investigator executes the
search on the host computer, which is connected to a large set of
active sensor nodes over a WAN. Each sensor node is connected
to one or more surveillance cameras and is equipped with local
storage and processing.

sented to the user, and utilizing the user’s limited attention more
effectively.

While Diamond dramatically accelerates brute-force search, most
realistic searches will not complete within seconds due to the large
volume of data. Since the user’s attention is a precious resource,
we have designed VideoFerret to utilize this resource as effectively
as possible. Some of these criteria are summarized below.

• Multiple Concurrent Searches: A VideoFerret user can ini-
tiate additional searches based on the partial results from an
initial search, and yet continue to pursue the first search as
well. For instance, an image of the suspect meeting with ac-
complices could be used to define additional searches that
look for those individuals as well. This is important for three
reasons. First, it allows the investigator to pursue new in-
quiries without losing focus on the current chain of events.
Second, by starting an additional search as soon as possible,
results could be available by the time the investigator is ready
to focus attention on the new topic. Third, the investigator is
able to simultaneously test multiple hypotheses by creating
several concurrent searches.

• Useful Partial Search Results: VideoFerret presents partial
search results to the user as they become available. This pro-
vides several advantages. First, the user is able to determine
that a particular query is fruitless (e.g., due to an excess of
false positives) without waiting for all of the data to be pro-
cessed. Second, the user may find sufficient evidence from
the partial results to suspend the search (e.g., the investiga-
tor may find a clear image of the getaway car’s license plate
early in the search). Third, partial results can be used as in-
put for additional searches. Other research on queries over
large databases has also argued for presenting partial results
to the user [8].

• Special-Purpose Visualizations: VideoFerret provides vi-
sualization interfaces to enable the investigator to organize
search results both spatially and temporally, to facilitate rea-
soning about events at the crime scene. For instance, know-

ing that the getaway car left the bank at a particular time
allows the investigator to discard matches for this vehicle at
the same time from distant locations. It also enables the in-
vestigator to focus on images taken by cameras at a particular
location. When showing matches, VideoFerret can highlight
the regions in the image that satisfy the search criteria, help-
ing the investigator to understand why a particular image was
returned and fine tune the search.

• Interactive Search Parameter Adjustment: VideoFerret
allows the investigator to interactively adjust search algo-
rithm parameters (e.g., distance metrics and thresholds) to
select the appropriate tradeoffs between precision and recall.
For instance, for cameras in challenging lighting conditions,
the investigator may choose to use lower thresholds and ac-
cept many false positives in exchange for a chance at catch-
ing a glimpse of the criminal. VideoFerret also provides vi-
sual feedback to help the investigator explore the impact of
changing parameters on sample images.

These criteria enable the user to focus attention on understanding
the semantic content of the video, while exploiting the computer’s
ability to perform brute-force seach across large collections of data.
The following section describes the interface that we have imple-
mented in VideoFerret to address these issues.

4. VIDEOFERRET INTERFACE
This section describes the interface for VideoFerret, the foren-

sic video reconstruction search application that runs on Diamond.
As described above, a key requirement in VideoFerret’s design is
to maximize the use of the investigator’s attention span. Addition-
ally, we have the following requirements for our search applica-
tion: an investigator should be able to define searches by providing
sample image patches, VideoFerret should provide a useful set of
content-based search algorithms, and it should be easy to extend
VideoFerret by adding new image retrieval algorithms.

Figure 2 shows a screenshot of VideoFerret. The interface is di-
vided into three regions. The camera display enables the investiga-
tor to select a particular camera and manually browse its recorded
video stream. The search display organizes the current set of con-
current searches. Each search allows the investigator to view the
hits matching the particular query and organize the results by cam-
era, time, etc. The map display highlights, for each hit, the corre-
sponding camera location. This helps the investigator to visualize
events at the crime scene, and track them across space and time.
The following subsections describe each of these components in
greater detail and how their design meets our application require-
ments.

4.1 Camera display
The camera display allows the investigator to browse recorded

video from one or more selected cameras (see Figure 3). The dis-
play supports toggling between multiple camera views to provide
different viewpoints of the same event. The investigator can easily
jump to a particular time, or manually browse forward and back-
ward in time looking for clues. This is particularly valuable for
cases when the investigator cannot easily specify a query suitable
for content-based image retrieval algorithms. For instance, a sus-
pect may have deposited a stolen item in a trash can for his ac-
complice. The investigator would like to track the person who re-
trieved the stolen item. Ideally, one would like to automatically
find the images containing the stolen item. Unfortunately, this may
be challenging because of poor camera resolution, occlusion, or an

Figure 2: VideoFerret Screenshot - This figure presents the main window of the forensic video reconstruction application. The
camera view (upper left), displays video from a selected camera. The map view (upper right) shows the physical locations of the
cameras where images matching the search criteria were taken. The lower half of the screen contains a region for each of two active
searches and displays individual images that match each of the queries.

Figure 3: Camera Display - A screenshot of the VideoFerret
camera display. This display allows the investigator to browse
data captured by a specific camera.

object’s nondescript or deformable appearance. Using the camera
display, the investigator can manually identify key frames where
“interesting” events occurred.

Once frames containing objects of interest are found, the investi-
gator can create a new search using the identified objects as exam-
ples to the content-based image retrieval algorithms. For example,
the investigator may highlight the suspect’s plaid shirt and initiate a
color histogram search to find regions in other images with similar
color distributions.

4.2 Search display
The search display enables the investigator to manage and view

results from multiple concurrent searches. Each search is allocated
a separate area of the display with its own set of controls (see Fig-
ure 4.

Search management allows the user to start or abort a current
search, or to refine the current search criteria. A search consists of a
boolean combination of predicates that are used to identify images
of interest. Each predicate consists of an algorithm and the configu-
ration state for that particular algorithm, such as parameter settings
(e.g., threshold, window size, distance metric) and training exem-
plars (e.g., color or texture patches). VideoFerret currently supports
a variety of image retrieval algorithms based on color, texture and
shape features, including trained object detectors (described in Sec-
tion 5.3.1); it also supports queries based on non-image metadata
such as time, geographic location or camera-id. The investigator
can edit a search by adding new predicates, or changing the pa-
rameters and exemplars for existing predicates. When editing these
parameters, the investigator can visualize the effects of these re-
finements on a selected set of images (see Figure 5). This allows
the investigator to specialize the search for the desired object, and
to appropriately tune each predicate’s precision/recall tradeoff.

The search display also provides interfaces for organizing results
from currently-executing searches. These partial results can be dis-
played using several views: grouped by camera, sorted by time,
or arranged by whether they have previously been seen. As re-
sults are displayed, regions that match the selected predicates are
highlighted in the image. As the investigator browses images, false

Figure 4: Search Display - This screenshot shows an active
search. The video frame displayed is one of the images re-
trieved by this search. The various buttons allow the investi-
gator to reconfigure the search and to control which images are
displayed.

Figure 5: Refinement Window - The investigator uses this win-
dow to adjust search parameters. Given a sample image, the
investigator can adjust the current search parameters and see
which regions match the adjusted predicate. In this case, the
image region marked with a white rectangle matches the cur-
rent search parameters.

Figure 6: Map Display - This window shows where images have
been found for the different searches. Each color indicates a
different search. The marked regions correspond to the ap-
proximate area viewed by each of the matching images / cam-
era views.

positives can be tagged and discarded. Similarly, the investigator
can select regions from these images as additional exemplars for
predicates in the current or other searches.

4.3 Map display
The map display (see Figure 6) shows where potential matches

were found in both time and space. When an match is found in
one of the active searches, the area on the map corresponding to
the camera is marked. The investigator can control which searches
are displayed as well as selecting time ranges. This allows the in-
vestigator to visualize the time-based flow of the object of interest
across the different cameras.

The investigator uses the map display to see where potential hits
are found. Using this map, events that are false positives can be
eliminated based on additional domain information known to the
investigator. For example, knowing that the suspect left the crime
scene on foot allows the investigator to safely eliminate potential
matches that find the suspect across town one minute later.

5. SYSTEM IMPLEMENTATION
The forensic video reconstruction system described in this pa-

per consists of three main components: (1) active sensor nodes,
which collect and store video data from the video cameras; (2) the
Diamond infrastructure, which enables distributed search over the
stored data; (3) the VideoFerret application, which encapsulates the
the content-based image retrieval algorithms and which provides
the user interface. The following sections examine these three com-
ponents in more detail.

5.1 Active Sensor Nodes
The active sensor nodes consist of a standard computer con-

nected to one or more video cameras. These nodes are equipped
with local storage to archive sensor data. Rather than simply stor-
ing the raw images from each camera, VideoFerret employs Multi-
Fidelity Storage (MFS) [14] to adaptively compress the incoming
video stream in an application-dependent manner. This allows the
system to more effectively utilize the limited storage capacity at
each node. In particular, each active sensor node may elect to
drop (or store at reduced fidelity) images based on an application-
specific interest metrics. For crime-scene detection, VideoFerret
may prioritize storage for those frames containing human faces and

Front EndBack End

Host SystemActive Storage Systems

A
ss

o
c.

D
M

A

H
o

st
R

u
n

ti
m

e

S
ea

rc
h

le
t

A
P

I

Domain

App

Storage
Runtime

Filter API

Storage
Runtime

Filter API

Storage
Runtime

Filter API

A
ss

o
c.

D
M

ASearchlet

Storage
Runtime

Filter API

Storage
Runtime

Filter API

Storage
Runtime

Filter API

A
ss

o
c.

D
M

ASearchlet

Storage
Runtime

Filter API

Storage
Runtime

Filter API

Storage
Runtime

Filter API

A
ss

o
c.

D
M

ASearchlet

Figure 7: Diamond Architecture - The front end encapsulates
the domain-specific application code and the back end provides
a generic search infrastructure.

traffic activity. The sensor node is network-accessible and exports
an interface that permits remote searching, as described in the next
section.

5.2 Diamond
VideoFerret uses the Diamond system [10] to efficiently perform

brute-force search across the distributed sensing nodes. The Di-
amond architecture (see Figure 7) separates the front end, which
encapsulates domain-specific application code, from the back end,
which consists of a domain-independent infrastructure. By sepa-
rating these two components we hope to build search infrastructure
that can be used for a wide range of search applications.

Diamond uses active storage [1,11,15], where processing is cou-
pled with storage, to enable application-specific code to be ex-
ecuted locally on the stored data. Remote execution allows the
search to be parallelized providing more aggregate computation
power than in a centralized search. Executing search code near
where the data is stored also eliminates the cost of transferring the
data to a centralized site; this is important in the forensic video
reconstruction scenario, where the different cameras may be con-
nected over a wide-area network or wireless infrastructure. Finally,
as cameras (and corresponding active storage devices) are added to
a surveillance network, the total computing power available in the
network increases appropriately.

A Diamond application runs on the host computer and interacts
with the user to formulate a query. Once a query has been formu-
lated, the application translates the query into a set of machine exe-
cutable tasks (termed a searchlet) that the back end uses to discard
data that does not match the search criteria. The searchlet contains
the domain-specific knowledge necessary to filter out hopeless data
and acts as a proxy of the application (and of the user) that executes
within the active storage devices at each sensing node.

A searchlet consists of a set of filters and some configuration
state (e.g., filter parameters and dependencies between filters). For
example, a searchlet to retrieve portraits of people in dark business
suits might contain two filters: a color histogram filter that finds
dark regions and an object detector that locates human faces. Each
of these filters can independently discard an image. Images that
pass through all filters in a searchlet are deemed interesting, and
made available to the domain application through the searchlet API.

Diamond is designed for interactive search and exploits several
simplifications inherent to the search domain. First, search tasks
only require read access to data, allowing Diamond to avoid lock-
ing complexities and to ignore some security issues. Second, search
tasks typically permit stored images to be examined in any or-
der. This order-independence offers several benefits: easy paral-
lelization within and across storage devices, significant flexibility

in scheduling data reads, and simplified migration of computation
between the active storage devices and host computer. Third, most
search tasks do not require maintaining state between images. This
“stateless” property supports efficient parallelization and simplifies
the run-time migration of computation between active storage de-
vice and host computer.

The Diamond system handles many of the complexities of a dis-
tributed system; communicating with multiple devices, optimiz-
ing the order the filters are evaluated, and dynamically partitioning
computation between the host and storage devices. This separation
allows the application writer to focus on algorithms for searching
the images.

The domain application may perform further processing on the
interesting images to see if they satisfy the user’s request. Because
such processing can be carried out centrally, at the application host
CPU, this additional processing can be more general than the pro-
cessing performed at the searchlet level. For instance, the addi-
tional processing may include cross-image correlations and query-
ing auxiliary databases. Once the domain application determines
that particular image matches the user’s criteria, that image is dis-
played to the user. When processing a large data set, it is important
to present the user with results as soon as they appear. Based on
these partial results, the user may choose to refine the query and
restart the search. Query refinement leads to the generation of a
new searchlet, which is once again executed by the back end.

To increase interactive performance, Diamond caches the results
of each filter to help answer subsequent queries. This caching is
implemented by uniquely identifying each filter and its dependen-
cies (attributes and arguments) without explicit support from the
application or the application developer. The cache provides two
primary benefits for improving interactive search time. First, the
cache reduces the search space by quickly eliminating objects that
will not pass a filter that has been previously executed. Second,
the cache reduces the amount of computation per object by stor-
ing previously computed results (e.g. feature extraction) instead of
recomputing them for each search.

5.3 VideoFerret Implementation
Our forensic video reconstruction application is a flexible, ex-

tensible, application that supports a variety of content-based image
retrieval algorithms, detailed in Section 5.3.1. The process for spec-
ifying a search is described in Section 5.3.2, and our approach for
interactive refinement of searches is given in Section 5.3.3.

5.3.1 Image Retrieval Algorithms
VideoFerret currently supports region- and object-based image

searches. All of these algorithms look for regions that contain the
specified features instead of looking at the image as a whole.

Color filters
VideoFerret supports color-based searches using histograms [6,

19]. Unlike prior approaches to color-based image retrieval [4],
where a fixed color representation was required for efficient index-
ing, VideoFerret offers the user the flexibility to interactively ad-
just the internal representation (e.g., number of bins, color spaces),
region-based search parameters (e.g., the search steps in both scale
and space) and similarity metrics (e.g., Manhattan, Euclidean or
Earth Mover’s Distance [17]). The effect of changing these param-
eters can be immediately visualized in VideoFerret (see Figure 5).
The user can specify target histograms that match the desired con-
cept by selecting patches from other images, such as those retrieved
in earlier searches. This is a significant improvement over systems
that require the user to select colors from a palette because the tar-

get histogram can be multimodal, representing multiple colors in
the appropriate proportions (e.g., a plaid shirt). However, since
color histograms cannot model the effects of variations in appear-
ance due to illumination and viewpoint effects, the user may need
to add several examples of color patches for certain concepts (e.g.,
water).

Texture filters
VideoFerret’s interface for region-based texture filters is similar

to the color filter described above. The user can build a customized
filter for the desired visual texture by providing a few examples.
The frequency content of the texture patch is represented using
standard techniques (e.g., using a Laplacian Pyramid [6]). As with
the histograms, the user can interactively adjust the search parame-
ters and see their effect on some sample images.

Offline-trained Object Detection
VideoFerret also employs offline-trained object detectors, such

as face detection algorithms [16, 18, 20]. These classifiers are best
suited for identifying semantic content that is not user-specific, be-
cause they typically must be trained on large databases of positive
and negative examples using machine learning algorithms. One
drawback to these algorithms is that they typically provide users
with little ability to adjust their performance (their trade-off be-
tween false-positive and false-negative rate is typically determined
at training time). VideoFerret can mitigate this to some degree by
supporting multiple classifiers for the same concept, each trained
for a particular choice of running time and classification accuracy.

5.3.2 Specifying a Search
When starting a new search, the investigator must map his/her

semantic request onto available algorithms. This is done by select-
ing one or more of the retrieval algorithms described in the previous
section. Once an algorithm is identified, the investigator creates a
predicate using that algorithm and sets its appropriate parameters.
For most algorithms these include thresholds, window size, stride,
scale, etc.; setting these parameters can enable the user to trade
speed for search accuracy.

For an example-based algorithm (e.g., color or texture match-
ing), the investigator must provide some sample image patches.
The investigator may select such examples by highlighting relevant
regions in the camera display or other image source.

Once the user has defined some predicates, he/she constructs a
search by combining these predicates using boolean operators. A
search returns all pictures that pass these predicates (e.g., com-
bining a red and blue histogram will return images that contain
both red and blue regions). When the investigator starts a search,
VideoFerret generates a searchlet that corresponds to the defined
search parameters and passes it to the Diamond system. Diamond
evaluates this searchlet on each object in the data set and returns
those objects that are flagged by the searchlet to VideoFerret for
display to the user.

5.3.3 Search Refinement
As discussed earlier, a important feature of VideoFerret is the

ability to interactively refine a search based on partial results. While
a VideoFerret search is running, matching images are presented to
the user as they become available. The user can look at these im-
ages and decide whether the current query is producing the desired
results. If it is, then the user can scan the results until the desired
images are located. A more likely scenario is the results do not pre-
cisely match what the user had in mind. In this case the user may
refine the search by adding predicates or adjusting parameters. A

Search Cameras Avg Time Std. Dev. Transfer Time
(secs) (secs)

S1 1 81.70 0.33 291
S1 4 84.87 2.12 1164
S1 8 85.01 3.93 2328
S1 12 84.67 0.33 3492
S2 1 81.74 2.59 291
S2 4 83.85 0.96 1164
S2 8 82.20 0.89 2328
S2 12 83.04 0.51 3492

Table 1: Search times - This table presents the average time
needed to search archived video frames on a varying number of
cameras (and corresponding active storage devices). Each cam-
era stored 1028 video frames. We report the average time and
standard deviation over 3 runs. Search S1 looked for images
with a specific color distribution and a human face and search
S2 looked for two different color distributions in the same im-
age. The last column is estimated time to move the data to a
centralized place over a 10Mbps network.

key to successful refinement is providing the user with visual feed-
back on how any potential changes will affect the results.

When the results are returned to the user, VideoFerret highlights
the regions of the image that match the current query. This pro-
vides feedback on why the current images match. Additionally,
VideoFerret allows the user to evaluate different predicates on sam-
ple images (returned results or from other sources) and visually
highlight those image regions that match the current predicate set-
tings. The user can then refine the predicates so that the search can
include or omit specific images.

6. PRELIMINARY RESULTS
We have performed some preliminary experiments to validate

the feasibility of our approach for searching archived surveillance
video. In these experiments we executed searches on a varying
number of cameras to see if we could search data in a reasonable
time frame and to demonstrate that our approach scales with the
number of camera added.

To get data for these experiments, we logged video from a cam-
era at a rate of 1 frame per second (640x480 resolution) for ap-
proximately 17 minutes (1028 frames) and then replicated this data
on each of the camera nodes. In these experiments our camera
nodes contained 1.2 GHz Intel R© Pentium R© III processors with
512 MB RAM and 73 GB SCSI disks and the host system contained
a 3.06 GHz Intel R© Pentium R© XeonTMprocessor, 2 GB RAM, and
a 120 GB IDE disk. The host and the camera nodes were connected
using a 10 Mbps Ethernet.

Using this test setup we executed two different searches while
varying the number of cameras involved in the search. The first
search (S1) looked for a specific color distribution and a human
face. The second search (S2) looked for two different color dis-
tributions to occur in the same image. We executed each search
over the selected cameras and measured the time required to the
search all the data.1 Table 1 reports the average completion time
and standard deviation over three runs of the search.

These results show that each search takes around 81–85 seconds.
Both searches take approximately the same time because they are

1In practice the time until the first result is delivered is a more prac-
tical metric since it reflects the user’s idle time; however, accurately
measuring this requires large numbers of real queries and data.

limited by the time needed to read the data off the disk and not by
the computation (we expect to improve on this in later versions of
Diamond). We also see that adding more cameras to the search does
not significantly change the time needed for each of the searches.

In contrast, the last column of Table 1 shows the time necessary
to transfer all the images to a centralized site using a 10Mbps net-
work (we assume the data is compressed but we do not reduce the
resolution). This time is the lower bound for searching the video at
a centralized site. As expected, performing the computation where
the data is stored offers significant performance advantages and
these benefits become more pronounced as the number of cameras
increases.

7. CONCLUSION
A lack of good ad hoc video search techniques precludes real-

time analysis of historical and current data in large-scale surveil-
lance systems. Linear human search is too slow, and automated
search is typically inadequate due to the absence of a general solu-
tion to the object recognition problem. Indexing and attribute-based
approaches fall short because data volumes are so high, potential
interesting characteristics so varied, and search criteria cannot be
known in advance.

We have described in this paper a new approach to surveillance
video analysis: VideoFerret blends human strengths in choosing
search strategies with highly parallelized automated image search
capabilities. Key to our approach is the use of active storage de-
vices associated with each surveillance camera. These active stor-
age devices can quickly eliminate clearly irrelevant material during
a search and thus reduce communication bottlenecks and simplify
scaling. VideoFerret further speeds the interpretation of results
by including facilities which help an investigator visualize search
results in temporal, geographic, and image context. VideoFerret
offers a system for fast, interactive, brute-force video searching
which is effective, highly scalable, and can permit surveillance
records to be useful during a response to an incident rather than
days or weeks after the fact.

8. REFERENCES
[1] A. Acharya, M. Uysal, and J. Saltz. Active disks:

Programming model, algorithms and evaluation. In
Proceedings of ASPLOS, 1998.

[2] C. Carson, S. Belongie, H. Greenspan, and J. Malik.
Blobworld: Image segmentation using
expectation-maximization and its application to image
querying. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(8), 2002.

[3] R. Collins, A. Lipton, and T. Kanade. A system for video
surveillance and monitoring. In Proceedings of the American
Nuclear Society (ANS) Eighth International Topical Meeting
on Robotics and Remote Systems, 1999.

[4] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, and W. Equitz. Efficient and effective querying
by image content. Journal of Intelligent Information Systems,
3(3/4), 1994.

[5] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang,
B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic,
D. Steele, and P. Yanker. Query by image and video content:
the QBIC system. IEEE Computer, 28, 1995.

[6] D. Forsyth and J. Ponce. Computer vision: a modern
approach. Prentice Hall, 2002.

[7] W. Grimson, C. Stauffer, R. Romano, and L. Lee. Using
adaptive tracking to classify and monitor activities in a site.

In Proceedings of IEEE Computer Vision and Pattern
Recognition, 1998.

[8] J. Hellerstein, R. Avnur, A. Chou, C. Hidber, V. Raman,
T. Roth, and P. Haas. Interactive data analysis: The
CONTROL project. IEEE Computer, August 1999.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In Architectural Support for Programming
Languages and Operating Systems, pages 93–104, 2000.

[10] L. Huston, R. Sukthankar, R. Wickremesinghe,
M. Satyanarayanan, G. R. Ganger, E. Riedel, and
A. Ailamaki. Diamond: A storage architecture for early
discard in interactive search. In Proceedings of USENIX
Conference on File and Storage Technologies (FAST), 2004.

[11] K. Keeton, D. Patterson, and J. Hellerstein. A case for
intelligent disks (IDISKs). SIGMOD Record, 27(3), 1998.

[12] R. Min, M. Bhardwaj, S. Cho, A. Sinha, E. Shih, A. Wang,
and A. Chandrakasan. Low-power wireless sensor networks.
In Proceedings of VLSI Design, 2001.

[13] S. Nath, A. Deshpande, Y. Ke, P. Gibbons, B. Karp, and
S. Seshan. Irisnet: An architecture for internet-scale sensing
services. In Proceedings of Conference on Very Large Data

Bases, 2003.
[14] P. Pillai, Y. Ke, and J. Campbell. Multi-fidelity storage. In

Proceedings of ACM Workshop on Visual Surveillance and
Sensor Networks, 2004.

[15] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for
large-scale data mining and multimedia. In Proceedings of
Conference on Very Large Data Bases, August 1998.

[16] H. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(1), 1998.

[17] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s
distance as a metric for image retrieval. International
Journal of Computer Vision, 40(2), 2000.

[18] H. Schneiderman and T. Kanade. A statistical model for 3D
object detection applied to faces and cars. In Proceedings of
IEEE Computer Vision and Pattern Recognition, 2000.

[19] M. Swain and B. Ballard. Color indexing. International
Journal of Computer Vision, 7, 1991.

[20] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In Proceedings of IEEE
Computer Vision and Pattern Recognition, 2001.

