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Abstract—The success of cloud computing can lead to
large, centralized collections of virtual machine (VM) im-
ages. The ability to interactively search these VM images at
a high semantic level emerges as an important capability.
This paper examines the opportunities and challenges
in creating such a search capability, and presents early
evidence of its feasibility.

Keywords- data-intensive computing; discard-based
search; forensic search; provenance; Diamond; cloud
computing; virtual machines; VCL; RC2; EC2; Internet
Suspend/Resume; ISR; deduplication; content-addressable
storage

I. INTRODUCTION

As cloud computing gains momentum, collections of
virtual machine (VM) images are starting to grow within
clouds. These VM images embody precious information
that is incidental to their primary purpose. For example,
they contain specific versions of dynamically linked li-
braries (DLL’s), tool chain versions, intermediate states
of data transformation, persistent cache state, browsing
bookmarks, and many other silent witnesses to the
precise state of the world at the moment when the VM
image was created. The ability to search this frozen
state could be valuable in tasks such as debugging and
troubleshooting, establishing the provenance of data or
code, criminal forensics, and quality control. In this pa-
per we examine issues relevant to creating such a search
capability and sketch the outline of an implementation.

II. LARGE VM CLOUDS

The term cloud computing means many things to
many people. This paper focuses on approaches that
encapsulate execution state in a VM image. For brevity,
we use the vendor-neutral and format-independent term
parcel to refer to such encapsulated state. A parcel
may contain both volatile state (a memory image) and
persistent state (a disk image), or just persistent state.

Figure 1 characterizes this computing space along
two dimensions. The “Parcel Storage” dimension shows
where parcels are stored when not in active use; the
“Parcel Execution” dimension shows where they run.
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Figure 1: Taxonomy of VM-based Cloud Computing

Our interest is in the two right quadrants, which contain
approaches that store parcels in the cloud. The top
right quadrant contains approaches such as Amazon’s
EC2 [1], IBM’s Research Compute Cloud (RC2) [2],
and the open source Eucalyptus infrastructure [3],
where parcel storage and execution both happen within
the cloud. The bottom right quadrant contains ap-
proaches such as the Internet Suspend/Resume R© system
(ISR) [4], [5], the Stanford Collective [6], [7], and
MokaFive [8], where parcels are stored in the cloud
but execute on a computer that is close to the user.

Collections of parcels in the cloud tend to be large
and long-lived. For example, an enterprise that deploys
ISR will add one parcel per user per day if it creates a
daily snapshot of each user’s parcel for backup and dis-
aster recovery. While strict retention policies can slow
this growth, the underlying dynamics are biased towards
expansion of parcel collections. This is shown in Table I,
which provides data on users and parcels from three
clouds with diverse architectures, user communities, and
workloads.

RC2, which researchers at IBM use for computing
resources and as a testbed, fits into the top right
quadrant of Figure 1 (“Managed Execution”). In this
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Current Current Previous Previous
Cloud Organization Users Parcels Users Parcels Duration
RC2 IBM Research 126 444 47 122 9 months
VCL North Carolina State Univ. 13, 334 523 12, 121 494 12 months
ISR Carnegie Mellon Univ. 56 1, 347 48 1, 971 12 months

Table I: Operational Characteristics and Growth of Three Clouds

system, most users create new parcels, which con-
tain customized software stacks, by extending standard
parcels that are provided by RC2’s administrators. Once
created, a parcel can be used, set aside for an extended
period of time, then reactivated, and so on. This leads
to a usage model in which each user tends to have a
few parcels (444 parcels for 126 users). Over a 9-month
period since its inception, RC2 shows substantial growth
in users (126 from 47) and parcels (444 from 122).

The VCL cloud, which is used by instructors and stu-
dents in the North Carolina State University system, also
maps to the top right quadrant of Figure 1. Unlike RC2,
most users cannot create new parcels: only instructors
and system administrators can do that. When a student
executes a parcel, he or she creates a new, temporary
VM whose state cannot be saved in the cloud. Students
store their long-term state (such as user files) outside
the parcel, typically in a distributed file system such
as AFS [9] or on detachable storage. Since VCL is in
production use across the entire state university system,
Table I shows that VCL has a very large number of
users (13,334). However, the tight control on creation
of new parcels results in only slightly more parcels in
VCL than in RC2 (523 versus 444). Over a 12-month
period, there has been modest growth in users (13,334
from 12,121) and parcels (523 from 494).

The ISR cloud at Carnegie Mellon maps to the bottom
right quadrant of Figure 1 (“Transient PC”), and is the
smallest of the three clouds in users (56). However, it
is by far the largest in parcels (1,347) because a user
can create a new parcel from a snapshot of his VM
at any time. Over a 12-month period, there has been
modest growth in users (56 from 48), but a significant
decrease in parcels (1,347 from 1,971) due to purging
and cleanup of inactive users and their parcels. Without
purging and cleanup, there would have been 84 users
and 3,059 parcels.

The growth of VM clouds poses a new challenge for
administrators and users: how does one identify parcels
that are relevant to a specific use context? This leads to
the need for a search capability for VM clouds, which
we examine in the next section.

III. CONTENT SEARCH OF PARCELS

If efficient content search of parcels were possible,
what new usage scenarios would this enable? We answer
this question by describing a number of hypothetical

use cases below. From these use cases, we deduce the
requirements and constraints imposed upon the design
of a search capability. We focus here on technical issues
and ignore the broader legal and ethical issues, many
pertaining to privacy, that will have to be addressed in
any real-world deployment of this search capability.

• A bug has just been discovered during the top-
level integration of components developed by a
large and geographically distributed software de-
velopment team. This bug is caused by a bad
programming practice in one developer’s code.
Does anyone else in his group share this same bad
practice? Can one check work still in progress to
catch the problem as early as possible? Can one
search recent parcels of team members to discover
such instances?
• A graphic arts company is accused of copyright
infringement because one of the photographs that
it sells appears to be a derivative of someone
else’s copyrighted photograph. Can one search the
company’s parcels to discover instances of the
original photograph or of intermediate stages of
its transformation into the suspicious product?
• A company wants to ensure that its employees
use only legally licensed software, that viruses have
not infected its parcels, and that it complies with
regulations governing the use of confidential data.
• A developer keeps snapshots of the machine on
which he or she works. A user reports an unusual,
hard to reproduce failure that the developer re-
members seeing while working on an unrelated
feature. The developer’s search for a parcel that
can demonstrate the failure is an ad-hoc combina-
tion of queries for commands and web-page visits
associated not with the failure, but with the feature.
• An application is to be deployed to Amazon
EC2. The application relies on standard services
and software, which the deployer must configure
properly for the EC2 environment. The deployer
finds “best practice” examples by searching for
parcels in EC2 that use the same services and
software in a similar way.
• A scientific community builds a cloud-based par-
cel collection that contains the results and infras-
tructure behind its papers. A researcher has an
idea, and searches the collection for related work—
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including the experimental setup encapsulated in
parcels.

Several requirements for the search capability emerge
from these examples. First, it must be possible to search
the contents of parcels and not just meta-data such
as parcel ownership, modification time, or operating
system type. Second, the use cases require domain-
dependent search queries. In the software example,
a query is best expressed in terms of programming-
language constructs; by contrast, in the photograph
example, a query is best expressed in terms of primitives
such as regions of specific color, regions of specific tex-
ture, human faces, specific animals, and so on. Simply
viewing parcel contents at a low semantic level (such
as regular expression search on ASCII strings) will not
lead to satisfactory results. Third, the high semantic
content of these searches implies direct involvement of
a human expert in the search process, including many
iterative refinements of the search query based on partial
results. This is in contrast to data mining, where human
involvement comes only at the beginning and the end
of a complete data scan.

IV. DISCARD-BASED SEARCH AS THE FOUNDATION

Since a parcel encapsulates arbitrary computing state,
the need to search its contents at a deep semantic level
with a human in the loop strongly suggests that classic
indexed search is unlikely to be satisfactory. Indexed
search, which is the dominant search metaphor today, is
predicated on the ability to precompute suitable indexes
for all conceivable queries that may be posed on the
data. Interpreted in its full generality, this assumption
implies an omniscience about the queries that may be
posed in the future. In practice, real systems today
severely limit the generality and semantic depth of
queries to that of available indexes. The difficult chal-
lenges of indexing for queries of high semantic content
have long been investigated by the knowledge retrieval
community [10], [11]. Unfortunately, there have been
no breakthrough advances to date.

To address these limitations, there has been recent
work towards a fundamentally different search metaphor
called discard-based search [12], [13]. This approach
defers search computation until the specifics of the
query are available rather than trying to precompute
in advance of queries. This allows a query to be
expressed as executable code on the raw data, rather
being restricted by a declarative query language such
as SQL. Further, the expertise, judgment, and intuition
of the user performing the search can then be brought
to bear on the specificity and selectivity of the current
search. In contrast, indexed search limits even experts to
the quality of the preprocessing that produced the index.
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Figure 2: Discard-based Search Architecture

These unique strengths of discard-based search make it
a good fit for the requirements presented in Section III.

Two optimizations can be used in discard-based
search to ensure an adequate rate of return of results
to an interactive user. First, high degrees of easily-
exploited parallelism can be used. Second, temporal
locality in search queries can be exploited by persistent
caching of search results. This can be viewed as a form
of just-in-time indexing that occurs incrementally as a
transparent side-effect of user activity.

The OpenDiamond R© platform is an open source
implementation of Linux middleware for discard-based
search [14]. Its extensible architecture, shown in Fig-
ure 2, cleanly separates the domain-specific and domain-
independent aspects of the problem. User interaction
typically occurs through a domain-specific GUI. The
domain-specific code that performs early discard on
servers is called a searchlet. It is typically composed
of individual components called filters. For example,
an image search application may provide filters for
face detection, color detection and texture detection.
Filters embody specific dimensions of knowledge, while
searchlets express a multi-dimensional search query
as a precedence graph of parametrized filters. The
OpenDiamond platform also supports filters written in
MATLAB [15] or as ImageJ macros [16], [17].

A searchlet is composed and presented by the ap-
plication through the Searchlet API, and is distributed
to all of the servers involved in the search task. Each
server iterates through the locally-stored objects in a
system-determined order and presents them to filters for
evaluation through the Filter API. Each filter can inde-
pendently discard an object. A server is ignorant of the
details of filter evaluation, only caring about the scalar
return value that is thresholded to determine whether a
given object should be discarded or passed to the next
filter. Only those objects that pass through the entire
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Version Size Files Bytes Release Days
(MB) Same Same Date Stale

2.6.33.1 353 100% 100% 03/15/2010 0
2.6.33.0 353 99% 98% 02/24/2010 19
2.6.32.9 341 71% 49% 02/23/2010 20
2.6.31.12 326 56% 33% 01/18/2010 56
2.6.30.10 315 47% 27% 01/06/2010 68

Table II: Linux Kernel Source Tree Similarity

gauntlet of filters in the searchlet are transmitted to
the client. Details on design and implementation of the
OpenDiamond platform can be found elsewhere [18].

V. EXPLOITING DATA SIMILARITY

The large size of VM’s (typically many GB) is
a major consideration when implementing any VM-
based application. Discard-based search of parcels is no
exception. By definition, discard-based search involves
runtime disk I/O to read the contents of each parcel,
and processing overhead to apply a searchlet to this
large amount of data. For a large collection of parcels,
the total runtime I/O and processing can be intolerably
large. Any performance optimization that could reduce
this cost is valuable. We observe that similarity of
data content across parcels is the source of such a
performance optimization—a file that recurs in many
parcels only needs to be examined once in any search.
In addition, there can be significant storage savings
through deduplication [19].

There are at least three different reasons for data
similarity across parcels. First, many parcels use the
same guest OS and applications. For example, if the
parcels of two users both use Windows XP Service Pack
3 as the guest there are likely to be many executables,
DLL’s, and system configuration files that are identical
in the two parcels. This first reason applies to RC2 and
VCL, where users draw from a set of core parcels in a
central repository. They can be customized, but there
will be significant overlap. Second, a user typically
modifies only a small part of his VM state at any
time. Hence, snapshots of his parcel that are taken
over a modest interval of time (i.e., typical durations of
hours or days), are likely to have many regions that are
unchanged. This second reason applies to ISR, where
users often create daily snapshots of their parcels. Third,
many files remain unmodified across successive releases
of software. This last reason applies to all three clouds
(RC2, VCL and ISR), because it is intrinsic to software
evolution and independent of cloud design.

Table II shows the number of files that are identical
in different releases of the Linux Kernel. Between the
source code trees of Linux Kernel versions 2.6.33.0 and
2.6.33.1 that were released almost three weeks apart
(19 days), nearly 99% of the files are identical. The
total size of these identical files amount to 98% of the
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Figure 3: Deduplication of VCL Parcels

tion of non-fixed-size chunk schemes is beyond the scope
of this paper but is on our agenda for future work.
The remainder of the paper uses the data from the ISR
deployment to quantify the impact of CAS privacy and
chunksize policies on the amount of storage required for
the content servers, and the volume of data that must be
transferred between clients and content servers.

4 Results: CAS & Storage

Because server storage represents a significant cost in
VM-based client management systems, we begin our dis-
cussion by investigating the extent to which a CAS-based
storage system could reduce the volume of data managed
by the server.

4.1 Effect of Privacy Policy on Storage
As expected, storage policy plays a significant role in
the efficiency of the data management system. Figure 5
presents the growth in storage requirements over the life-
time of the study for the three different policies using a
fixed chunksize (128 KB). As mentioned in Section 3.2,
the graph normalizes the starting date of all users to day
zero. The growth in the storage from thereon is due to
normal usage of disks and storage of memory check-
points belonging to the users. The storage requirement
shown includes both the disk and memory images.
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Figure 5: Growth of storage needs for Delta, IP, and ALL.

CAS provides significant savings. As shown in Fig-
ure 5, adopting CAS with the IP policy reduces the re-
quired server resources at day 201 under the Delta policy
by 306 GB, from 717 GB to 411 GB. This reduction rep-
resents a savings of 42%.
Recall that adopting CAS is a lossless operation; CAS
simply stores the same data more efficiently than the
Delta policy. The improved efficiency is due to the fact

that the Delta policy only exploits temporal redundancy
between versions. That is, the Delta policy only identi-
fies identical objects when they occur in the same loca-
tion in subsequent versions of a VM image. The IP pol-
icy, in contrast, identifies redundancy anywhere within
the parcel – within a version as well as between versions
(including between non-subsequent versions).
Note that the 42% space savings was realized with-
out compromising privacy. Users in a CAS-IP-backed
system do not expose the contents of their data to any
greater degree than users of a Delta-backed system.
Relaxing privacy introduces additional gains. In
systems where a small relaxation of privacy guarantees
is acceptable, additional savings are possible. When the
privacy policy is relaxed from IP to ALL, the system is
able to identify additional redundancy that may exist be-
tween different users’ data. From Figure 5, we see that
such a relaxation will reduce the storage resources re-
quired by another 133 GB, to 278 GB. The total space
savings realized by altering the policy fromDelta to ALL
is 61%.
On comparingALLwith IP in Figure 5, we see that the
curves are approximately parallel to each other. How-
ever, under certain situations, a system employing the
ALL policy could dramatically outperform a similar sys-
tem that employs the IP policy. Imagine for example a
scenario where a security patch is applied by each of
a large number, N, of users in an enterprise. Assum-
ing that the patch affected each user’s environment in the
same way, by introducingX MB of new data, an IP server
would register a total addition of NX MB. In contrast, an
ALL server would identify the N copies of the patched
data as identical and would consequently register a total
addition of X MB.
The starting points of the curves in Figure 5 are also
of interest. Because the X-axis has been normalized, this
point corresponds to the creation date of all parcels. To
create a new parcel account, the system administrator
copies a gold image as version 1 of the parcel. Hence,
we would assume that the systemwould exhibit very pre-
dictable behavior at time zero.
For example, under the Delta policy which only re-
duces redundancy between versions, the system data
should occupy storage equal to the number of users times
the space allocated to each user. In the deployment, users
were allocated 8 GB for disk space and 256 MB for
memory images. Thirty-six parcels should then require
approximately 300 GB of storage space which is exactly
the figure reported in the figure.
For the IP policy, one would also expect the server to
support a separate image for each user. However, CAS
had eliminated the redundant data within each of these
images yielding an average image size of approximately
4 GB. The observed 171 GB storage space is consistent
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Figure 4: Deduplication of ISR Parcels (Nath et al [21])

total source code size in bytes. Even versions that are
more than two months apart show substantial similarity:
between versions 2.6.30.10 and 2.6.33.1, nearly 47% of
the files are identical. These files account for nearly 27%
of total source tree size in bytes. As reported by Tolia
et al [20], other versions of the Linux kernel including
the 2.2 series have significant numbers of identical files
across versions. Extrapolating from these examples, we
conjecture that inter-version data similarity is a property
of all mature software systems.

The cumulative effect of these diverse sources of
data similarity can be substantial. Figure 3 shows the
impact of deduplication at the whole-file level on 78
VCL parcels based on Windows XP. The number of files
with distinct content grows much more slowly than the
total number of files. Figure 3(a) shows less than 500
thousand distinct files out of two million total files in
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Figure 5: Searching JPEG Files within Parcels

78 parcels—almost all from the production NCSU VCL
environment. The storage capacity and I/O bandwidth
savings from deduplication of these files is substantial:
50 GB rather than 250 GB, as shown in Figure 3(b).

As reported by Nath et al [21], deduplication is highly
effective in ISR parcels. Figure 4, based on data from
a 25-user ISR-3 cloud in 2005, shows the potential
benefits of deduplication in ISR. The curve labeled
“delta” shows the growth of total server storage if all
modified chunks of a parcel are saved at each snapshot.
The curve labeled “ip” shows storage growth if dedu-
plication is done strictly within successive versions of a
parcel. The curve labeled “all” shows storage growth if
deduplication is done across all versions of all parcels.

VI. PRELIMINARY EVIDENCE OF FEASIBILITY

We have begun work towards the creation of a search
capability for VM clouds along the lines described in
this paper. Our design leverages a parcel storage engine
called Mirage [22] from IBM Research that was created
to control VM image sprawl in clouds. Mirage parses
the virtual disk partitions in a parcel, then extracts and
deduplicates individual files from those partitions. It
is currently able to parse Linux file system formats
such as ext2 and ext3, as well as the Windows
NTFS format. We have extended the server backend
of the OpenDiamond platform to redirect file requests
from searchlets to Mirage rather than obtaining those
files from the server’s local file system. Our extension
incorporates three critical pieces of infrastructure: a data
source abstraction layer, a database containing file-level
semantics, and a scoping mechanism to limit search
queries to files of certain types and to provide access
control. This extension to the OpenDiamond platform
enables a seamless integration of discard-based search
and data stored within VM clouds.

Although our implementation is incomplete, there
is enough functional for a proof of concept. Figure 5
shows a screenshot from an OpenDiamond application
that enables users to search images in various formats
such as JPEG, TIFF, and PNG. A user specifies a search

query by selecting one or more filters from a predefined
set (for example, a human face filter) or by defining by
example a filter for a simple property such as color or
texture. The user’s experience in using the application
is indistinguishable from searches on data stored on
local file systems. The application only has to search
20, 167 unique files (671 MB) as opposed to 100, 153
(2 GB) raw files in the 78 VCL parcels depicted in
Figure 3 due to the benefits provided by deduplication.
We have also begun work towards implementing some
of the applications that were alluded to in Section 3
such as source code search, and virus search.

VII. CONCLUSION

The growth of cloud computing will lead to the
emergence of large VM clouds that encapsulate valuable
computing state. As these collections expand, it will
become increasingly important to be able to search their
content at a high semantic level. In this paper we have
shown why discard-based search, originally developed
for interactive search of complex non-indexed data on
server disks, is valuable to extend to VM clouds. In
making this extension, deduplication is an important
storage optimization to leverage for scalability. Based
on positive preliminary evidence of feasibility, we are
now working towards a full implementation of the ideas
described in this paper.
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