
J Internet Serv Appl
DOI 10.1007/s13174-010-0001-z

O R I G I NA L PA P E R

The unique strengths and storage access characteristics
of discard-based search

Mahadev Satyanarayanan · Rahul Sukthankar ·
Lily Mummert · Adam Goode · Jan Harkes ·
Steve Schlosser

Received: 26 January 2010 / Accepted: 2 February 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Discard-based search is a new approach to
searching the content of complex, unlabeled, nonindexed
data such as digital photographs, medical images, and real-
time surveillance data. The essence of this approach is
query-specific content-based computation, pipelined with
human cognition. In this approach, query-specific parallel
computation shrinks a search task down to human scale,
thus allowing the expertise, judgment, and intuition of an
expert to be brought to bear on the specificity and selec-
tivity of the search. In this paper, we report on the lessons
learned in the Diamond project from applying discard-based
search to a variety of applications in the health sciences.
From the viewpoint of a user, discard-based search offers
unique strengths. From the viewpoint of server hardware
and software, it offers unique opportunities for optimization
that contradict long-established tenets of storage design. To-
gether, these distinctive end-to-end attributes herald a new
genre of Internet applications.

Keywords Data-intensive computing · Non-text search
technology · Medical image processing · Interactive
search · Computer vision · Pattern recognition · Distributed
systems · ImageJ · MATLAB · Parallel processing ·
Human-in-the-loop · Diamond · OpenDiamond · Storage
systems · I/O workloads · RAID

M. Satyanarayanan (�) · A. Goode · J. Harkes
Carnegie Mellon Univ., Pittsburgh, PA, USA
e-mail: satya@cs.cmu.edu

R. Sukthankar · L. Mummert
Intel Labs Pittsburgh,Pittsburgh, PA, USA

S. Schlosser
Avere Systems, Pittsburgh, PA, USA

1 Introduction

Today, “search” and “indexing” are almost inseparable con-
cepts. The success of indexing in Web search engines and
relational databases has led to a mindset where search is
impossible without an index. Unfortunately, there are situ-
ations where we do not know how to build an efficient in-
dex. This is especially true for complex data such as digi-
tal photographs, medical images, real-time surveillance im-
ages, and sound recordings. The need exists to search such
data now rather than waiting for indexing technology to
catch up.

For example, consider Fig. 1, showing two examples of
lip prints from thousands collected worldwide by efforts to
discover the genetic origins of cleft palate syndrome. Of the
many visual differences between the left image (control) and
the right image (from a family with cleft palate members),
which are the features predictive of the genetic defect? What
search tools can a medical researcher use today to explore a
large collection of lip prints to answer this question?

Another example pertains to drug discovery in the phar-
maceutical industry. Figure 2 shows two examples of neu-
ronal stem cell images from a multi-week drug toxicity ex-
periment that generates thousands of such cell microscope
images per hour. The left image is expected under normal
growth conditions. The right image is an anomaly, possibly

Fig. 1 Examples of lip prints in craniofacial research

mailto:satya@cs.cmu.edu

J Internet Serv Appl

Fig. 2 Examples of neuronal stem cell growth

indicating experimental error. What tools can a researcher
use to discover such anomalies in real time, to see if they
have occurred before, and to possibly abort the experiment?

To address such real-world needs, we are exploring a
new approach called discard-based search. The essence
of this approach is query-specific content-based computa-
tion, pipelined with human cognition. More specifically, we
use query-specific parallel computation on large collections
of complex data spread across multiple Internet servers to
shrink a search task down to human scale. The expertise,
judgment, and intuition of the user performing the search
can then be brought to bear on the specificity and selectivity
of the current search. Our focus on interactive search, with a
human expert such as a doctor, medical researcher, law en-
forcement officer, or military analyst in the loop, means that
user attention is the most precious system resource. Making
the most of available user attention is far more important
than optimizing for server CPU utilization, disk traffic, net-
work bandwidth, or other system metrics.

We have been exploring this new search paradigm in the
Diamond project since late 2002 and have gained experi-
ence in applying it to the health sciences. We now have a
deeper understanding of the unique attributes of discard-
based search from a user perspective. We also realize that
the server workloads induced by discard-based search in-
validate many tenets of storage design. We focus on these
lessons and insights in this paper.

Over time, we have learned how to cleanly separate
the domain-specific and domain-independent aspects of
discard-based search, encapsulating the latter into Linux
middleware that is based on standard Internet component
technologies. This open-source middleware is called the
OpenDiamond® platform for discard-based search (http://
diamond.cs.cmu.edu). For ease of exposition, we use the
term “Diamond” loosely in this paper: as our project name,
to characterize our approach to search (“the Diamond ap-
proach”), to describe the class of applications that use this
approach (“Diamond applications”), and so on. However,
the term “OpenDiamond platform” always refers specifi-
cally to the open-source middleware.

From an end-to-end Internet perspective, the OpenDia-
mond platform offers a new way to connect the owners of
complex data and the domain experts who may derive value

from searching that data. At one end, as discussed in Sect. 4,
it opens the door to search applications that take full advan-
tage of the domain expertise of users. At the other end, as
discussed in Sect. 5, it helps to overcome long-entrenched
constraints of storage system design. Together, these dis-
tinctive attributes suggest the emergence of a new genre of
Internet applications with valuable end-to-end properties.

2 Background and related work

2.1 Early discard

Without an index, brute-force search is the only way to sep-
arate relevant and irrelevant data. The efficiency with which
data objects can be examined and rejected then becomes the
key figure of merit. The Diamond approach was inspired by
work published in the late 1990s on active disks [1, 16, 23].
These diverse investigations suggested that application-level
processing close to storage offers significant performance
benefits. In particular, they suggested the feasibility of early
discard or the application-specific rejection of irrelevant
data as early as possible in the pipeline from storage to
user. This performance optimization, illustrated in Fig. 3,
improves scalability by eliminating a large fraction of the
data from most of the pipeline. Most discards are done by
application-specific software at the extreme right, very close
to where the data is stored (at the label “early discard”). Ad-
ditional discards by application-specific software may hap-
pen closer to the user (at the label “late discard”).

The application-specific code in Diamond that performs
early discard is called a searchlet. While a searchlet can
be a monolithic piece of code, it is more typically com-
posed of individual components called filters. For example,
a photo search application may provide filters for face de-
tection, color detection, and texture detection. Filters em-
body specific dimensions of domain-specific knowledge,
while searchlets represent the combination of attributes be-
ing sought by the current search.

Ideally, discard-based search would reject all irrelevant
data without eliminating any desired data. This is impossi-
ble in practice because of a fundamental trade-off between

Fig. 3 Early discard optimization

http://diamond.cs.cmu.edu
http://diamond.cs.cmu.edu

J Internet Serv Appl

false-positives (irrelevant data that is not rejected) and false-
negatives (relevant data that is incorrectly discarded) [8].
The best one can do is to tune a discard algorithm to fa-
vor one at the expense of the other. Different search appli-
cations and queries may need to make different trade-offs
in this space. A Diamond user has direct control over these
trade-offs.

2.2 Diamond architecture

As Fig. 4 illustrates, the Diamond architecture cleanly sep-
arates domain-specific code from the domain-independent
runtime system. The OpenDiamond platform consists of
domain-independent client and server runtime software, the
APIs to this runtime software, and a TCP-based network
protocol. On a client machine, user interaction typically oc-
curs through a domain-specific GUI.

The searchlet is composed and presented by the appli-
cation through the Searchlet API, and is distributed by Di-
amond to all of the servers involved in the search task.
A searchlet describes a precedence graph of filters that
exposes the available degrees of freedom in scheduling
and parallel execution to Diamond. At each server, Dia-
mond iterates through the locally-stored objects in a system-
determined order and presents them to filters for evaluation
through the Filter API. Each filter can independently dis-
card an object. Diamond is ignorant of the details of filter
evaluation, only caring about the scalar return value that is
thresholded to determine whether a given object should be
discarded or passed to the next filter. Only those objects that
pass through the entire gauntlet of filters in the searchlet are
transmitted to the client.

A key architectural constraint of Diamond is that servers
do not communicate directly with each other. This simpli-
fies access control in multi-enterprise searches. If a user has
privileges to search servers individually in different enter-
prises, she is immediately able to conduct searches that span
those servers.

Fig. 4 System architecture

As discussed in our early Diamond paper [15], self-
tuning mechanisms on servers can be used to improve the ef-
ficiency of discard-based search. First, queue back-pressure
on the result stream can be used for dynamic load balanc-
ing in searchlet execution between server and client. Second,
application-transparent runtime monitoring of the computa-
tional cost and selectivity of filters can be used for dynamic
adaptation of searchlet execution. Such adaptation can help
achieve earliest discard of data objects at least cost, without
requiring data-specific or application-specific knowledge.

Domain-specific tools such as ImageJ and MATLAB can
be used to create Diamond filters. ImageJ is an image
processing tool that is widely used by cell biology re-
searchers. MATLAB is a matrix language that is widely used
in many domains. As Diamond matures, we expect to in-
clude other domain-specific tools.

Diamond allows information stored in a structured data
source, such as a relational database, to constrain discard-
based search. Consider a query such as “From women aged
40–50 who are smokers, find mammograms that have a le-
sion similar to this one.” Age and personal habits are typi-
cally found in a patient record database, while lesion sim-
ilarity requires discard-based search of mammograms. We
refer to this external constraining of data objects as scop-
ing a discard-based search. Accurate scoping can greatly
reduce the amount of work that has to be done by discard-
based search.

The client–server network protocol separates control
from data. For each server involved in a search, there is pair
of TCP connections between that server and the client. This
has been done with an eye to the future, when different net-
working technologies may be used for the two channels in
order to optimize for their very different traffic characteris-
tics. Responsiveness is critical on the control channel, while
high throughput is critical on the data channel, referred to as
the blast channel.

2.3 Result and attribute caching on servers

A typical Diamond search session exhibits significant over-
lap in filters and parameters across steps of the search. This
temporal locality can be exploited by caching filter execu-
tion results at servers. Over time, cache entries will be cre-
ated for many objects on frequently used combinations of
filters and parameters. This reduces the speed differential
with respect to indexed search and can be viewed as a form
of just-in-time indexing that is performed incrementally at
run time as a side-effect of discard-based searches. It is com-
pletely transparent to users, applications, and filters.

Caching on servers takes two different forms: result
caching and attribute caching. An attribute is typically cre-
ated as a side-effect of filter execution for the benefit of
downstream filters or the application on the client. An exam-
ple of an attribute is the set of locations of faces found by a

J Internet Serv Appl

face detection filter that is upstream from a face recognition
filter. Both forms of caching are application-transparent and
invisible to clients except for improved performance. Both
caches are persistent across server reboots and are shared
across all users. Thus, users can benefit from each others’
search activities without any coordination. The sharing of
knowledge within an enterprise can give rise to significant
communal locality in filter executions.

Result caching allows a server to remember the outcomes
of object–filter–parameter combinations. Since filters con-
sist of arbitrary code and parameters, we use a cryptographic
hash of the filter code and parameter values to generate a
fixed-length cache tag. Note that cache entries are very small
(few tens of bytes each) in comparison to typical object
sizes.

Attribute caching is the other form of caching in Dia-
mond. Hits in the attribute cache reduce server load and
improve performance. We use an adaptive approach for at-
tribute caching because some intermediate attributes can be
costly to compute, while others are cheap. Some attributes
can be very large, while others are small. It is pointless to
cache attributes that are large and cheap to compute, since
this wastes disk space and I/O bandwidth for little benefit.
An example of such an attribute is the decompressed bitmap
of a JPEG image. The most valuable attributes to cache are
those that are small but expensive to generate, such as the
pixel coordinates of faces discovered by a face detection fil-
ter. To implement this policy, the server runtime system dy-
namically monitors filter execution times and attribute sizes.
Only attributes below a certain space-time threshold (cur-
rently 1 MB of size per second of computation) are cached.

2.4 Relationship to MapReduce and other work

Diamond is the first system to unify the distinct concerns of
interactive search and complex, nonindexed data. Data com-
plexity motivates pipelined filter execution, early discard,
self-tuning for filter execution order, the ability to use ex-
ternal domain-specific tools such as ImageJ and MATLAB,
and the ability to use external meta-data to scope searches.
Concern for crisp interaction motivates caching of results
and attributes at servers, streamlining of result transmission,
self-tuning of searchlets, and separation of control and blast
channels in the network protocol.

The dissemination and parallel execution of searchlet
code at multiple servers bears some resemblance to the ex-
ecution model of MapReduce [6, 7]. At a high level of ab-
straction, both models appear to address the same problem:
going through a large corpus of data for identifying objects
that match some search criteria. In both models, execution
happens as close to data as possible. However, the simi-
larity is only superficial, and there are many differences at
lower levels of abstraction. MapReduce is a batch process-
ing model, intended for index creation prior to search ex-
ecution. In contrast, Diamond searchlets are created and

executed during the course of an interactive search. None
of the Diamond mechanisms for crisp user interaction that
were mentioned earlier have counterparts in MapReduce.
Fault tolerance is important in MapReduce because it is in-
tended for long-running batch executions. In contrast, Dia-
mond searchlet execution ignores failures since most execu-
tions are likely to be aborted soon by the user.

Aspects of Diamond filter execution bear resemblance
to the work of Abacus [3], Coign [14], River [4], and Ed-
dies [5]. Those systems provide for dynamic adaptation of
execution in heterogeneous systems. Coign focuses on com-
munication links between application components. Abacus
automatically moves computation between hosts or storage
devices in a cluster based on performance and system load.
River handles adaptive dataflow control generically in the
presence of failures and heterogeneous hardware resources.
Eddies adaptively reshapes dataflow graphs to maximize
performance by monitoring the rates at which data is pro-
duced and consumed at nodes.

From a broader perspective, indexed search of complex
data has long been the holy grail of the knowledge re-
trieval community. Early efforts included systems such as
QBIC [9]. More recently, low-level feature detectors and de-
scriptors such as SIFT [18] have led to efficient schemes
for index-based subimage retrieval. However, all of these
methods have succeeded only in narrow contexts. For the
foreseeable future, automated indexing of complex data will
continue to be a challenge for several reasons. First, auto-
mated methods for extracting semantic content from many
data types are still rather primitive. This is referred to as
the “semantic gap” [20] in information retrieval. Second, the
richness of the data often requires a high-dimensional repre-
sentation that is not amenable to efficient indexing. This is a
consequence of the curse of dimensionality [27]. Third, real-
istic user queries can be very sophisticated, requiring a great
deal of domain knowledge that is often not available to the
system for optimization. Fourth, expressing a user’s vaguely
specified query in a machine-interpretable form can be dif-
ficult. These deep problems will long constrain the success
of indexed search for complex data.

3 Diamond applications

Over a multiyear period, we have implemented diverse ap-
plications on the OpenDiamond platform. The diversity of
these applications speaks for the versatility of the Dia-
mond approach and its embodiment in the OpenDiamond
platform. Working closely with domain experts to create
these applications has helped us to refine our thinking about
discard-based search. It has also guided extensive evolution
of the OpenDiamond platform.

J Internet Serv Appl

We describe five of these applications below. Except for
the first, they are all from the health sciences. Our concen-
tration on this domain is purely due to historical circum-
stances. Researchers in the health sciences (both in industry
and academia) were the first to see how our work could ben-
efit them and helped us to acquire the funding to create these
applications. We are confident that our work can also bene-
fit many other domains. For example, we are collaborating
with a major software vendor to apply discard-based search
to large collections of virtual machine images.

3.1 Unorganized digital photographs

SnapFind enables users to interactively search large collec-
tions of unlabeled photographs. Users typically wish to lo-
cate photos by semantic content (for example, “Show me
the whale watching pictures from our Hawaii vacation”), but
this level of semantic understanding is beyond today’s auto-
mated image indexing techniques. As shown in Fig. 5(a),
SnapFind provides a GUI for users to create searchlets by
combining simple filters that scan images for patches con-
taining particular color distributions, shapes, or visual tex-
tures. The user can either select a predefined filter (for ex-
ample, “frontal human faces”) or create new filters from
patches in example images (for example, a “blue jeans”
color filter).

SnapFind supports filters created using ImageJ, a tool
that is widely used by researchers in cell biology, pathology,
and other medical specialties. The ability to easily add Java-
based plugins and the ability to record macros of user inter-
action are two valuable features of the tool. An investigator
can create an ImageJ macro on a small sample of images and
then use that macro as a filter in SnapFind to search a large
collection of images. A copy of ImageJ runs on each server
to handle the processing of these filters and is invoked at ap-
propriate points in searchlet execution by the OpenDiamond
platform. A similar approach has been used to integrate the
widely used MATLAB tool. Based on our positive experi-
ence with ImageJ and MATLAB, we plan to implement a
general mechanism to allow VM-encapsulated code to serve
as a filter execution engine. This will increase versatility,
but an efficient implementation is likely to be challenging
because of the overhead of VM boundary crossings.

3.2 Lesions in mammograms

MassFind is an interactive tool for analyzing mammograms
that combines a lightbox-style interface that is familiar to
radiologists with the power of interactive search. Radiolo-
gists can browse cases in the standard four-image view, as
shown in Fig. 5(b). A magnifying tool is provided to as-
sist in picking out small detail. Also integrated is a semi-
automated mass contour tool that will draw outlines around

Fig. 5 Screenshots of example applications

lesions on a mammogram when given a center point from
which to start. Once a mass is identified, a search can be in-
voked to find similar masses. We have explored the use of
a variety of distance metrics, including some based on ma-
chine learning [26], to find close matches from a mass cor-
pus. Attached metadata on each retrieved case gives biopsy
results and a similarity score. Radiologists can use MassFind

J Internet Serv Appl

Fig. 5 (Continued)

to help categorize an unknown mass based on similarity to
images in an archive.

3.3 Digital pathology

Based on analysis of expected workflow by a typical pathol-
ogist, a tool called PathFind has been developed. As shown
in Fig. 5(c), PathFind incorporates a vendor-neutral whole-
slide image viewer that allows a pathologist to zoom and
navigate a whole slide image just as he does with a micro-
scope and glass slides today [13]. The PathFind interface
allows the pathologist to identify regions of interest on the
slide at any magnification and then search for similar re-
gions across multiple slide formats. The search results can
be viewed and compared with the original image. The case
data for each result can also be retrieved.

3.4 Adipocyte quantitation

In the field of lipid research, the measurement of adipocyte
size is an important, but difficult problem. We have built

a tool called FatFind for an imaging-based solution that
combines precise investigator control with semi-automated
quantitation. FatFind enables the use of unfixed live cells,
thus avoiding many complications that arise in trying to
isolate individual adipocytes. The standard FatFind work-
flow consists of calibration, search definition, and investi-
gation. Figure 5(d) shows the FatFind GUI in the calibrate
step. In this step, the researcher starts with images from a
small local collection and selects one of them to define a
baseline. FatFind runs an ellipse extraction algorithm to lo-
cate the adipocytes in the image [12, 17]. The investigator
chooses one of these as the reference image and then defines
a search in terms of parameters relative to this adipocyte.
Once a search has been defined, the researcher can interac-
tively search for matching adipocytes in the image repos-
itory. He can also make adjustments to manually override
imperfections in the image processing and obtain size distri-
butions and other statistics of the returned results.

3.5 Online anomaly detection

StrangeFind is an application for online anomaly detection
across different modalities and types of data. It was devel-
oped for the scenario described as the second example of
Sect. 1: assisting pharmaceutical researchers in automated
cell microscopy, where very high volumes of cell imaging
are typical [11]. Figure 5(e) illustrates the user interface of
this tool. Anomaly detection is separated into two phases,
a domain-specific image processing phase and a domain-
independent statistical phase. This split allows flexibility in
the choice of image processing and cell type, while preserv-
ing the high-level aspects of the application. StrangeFind
currently supports anomaly detection of adipocyte images
(where the image processing analyzes sizes, shapes, and
counts of fat cells), brightfield neurite images (where the
image processing analyzes counts, lengths, and sizes of neu-
rite cells), and XML files that contain image descriptors ex-
tracted by proprietary image processing tools. As an online
anomaly detector, StrangeFind does not require a predefined
statistical model. Instead, it builds up the model as it exam-
ines the data.

4 Unique strengths of discard-based search

Through our extensive collaborations with domain experts,
we have acquired a deep appreciation for the strengths
of discard-based search relative to indexed search. These
strengths were not apparent to us initially, since the moti-
vation for our work was simply coping with the lack of an
index for complex data.

Relative to indexed search, the weaknesses of discard-
based search are obvious: speed and security. The speed

J Internet Serv Appl

weakness arises because all data is preprocessed in indexed
search. Hence, there are no compute-intensive or storage-
intensive algorithms at runtime. In practice, this speed ad-
vantage tends to be less dramatic because of result and at-
tribute caching by servers in our system, as discussed in
Sect. 2.3. The security weakness arises because the early-
discard optimization requires searchlet code to be run close
to servers. Although a broad range of sandboxing tech-
niques, language-based techniques, and verification tech-
niques can be applied to reduce risk, the essential point re-
mains that untrusted code runs on trusted infrastructure dur-
ing a discard-based search. This is not a concern with in-
dexed search, since preprocessing is done offline.

At the same time, discard-based search has certain unique
strengths. These include: (a) flexibility in tuning between
false positives and false negatives, (b) ability to dynami-
cally incorporate new knowledge, and (c) better integration
of user expertise.

4.1 Dynamic tuning of precision and recall

The preprocessing for indexed search represents a spe-
cific point on a precision-recall curve, and hence a spe-
cific choice in the tradeoff space between false positives
and false negatives. In contrast, this tradeoff can be dynam-
ically changed during a discard-based search session. Using
domain-specific knowledge, an expert user may tune search-
lets toward false positives or false negatives depending on
factors such as the purpose of the search, its completeness
relative to total data volume, and the user’s judgment of re-
sults from earlier iterations in the search process.

It is also possible to return a clearly labeled sampling
of discarded objects to alert the user to what she might be
missing, and hence to the likelihood of false negatives. To
improve a searchlet, a Diamond user needs at least a modest
rate of return of results even if they are not of the highest
quality. Sometimes, the best way to improve a searchlet is
by tuning it to reduce false negatives, typically at the cost
of increasing false positives. To aid in this, a planned exten-
sion of our system will provide a separate result stream that
is a sparse sampling of discarded objects. Applications can
present this stream in a domain-specific manner to the user,
and allow her to discover false negatives. It is an open ques-
tion at this time whether the sampling of discarded objects
should be uniform or biased towards the discard threshold
(i.e., “near misses”).

4.2 Dynamic incorporation of new knowledge

The preprocessing for indexing can only be as good as the
state of knowledge at the time of indexing. New knowledge
may render some of this preprocessing stale. In contrast,
discard-based search is based on the state of knowledge of

the user at the moment of searchlet creation or parameter-
ization. This state of knowledge may improve even during
the course of a search. For example, the index terms used in
labeling a corpus of medical data may later be discovered to
be incomplete or inaccurate. Some cases of a condition that
used to be called “A” may now be understood to actually be
a new condition “B.” Note that this observation is true even
if index terms were obtained by game-based human tagging
approaches such as ESP [2].

4.3 Ability to leverage user expertise

Discard-based search better utilizes the user’s intuition, ex-
pertise, and judgment. In contrast, indexed search limits
even experts to the quality of the preprocessing that pro-
duced the index. There are many degrees of freedom in
searchlet creation and parameterization through which user
expertise can be expressed. In the most general case, the user
can dynamically generate new code for a filter through pro-
gramming or through machine learning from recent search
results. More commonly, the parameters of an existing filter
are modified.

As mentioned earlier, Diamond is very much a human-
in-the-loop system. It is based on the premise that at small
scale, there is no substitute for deep human knowledge of
complex, domain-specific data. However, these uniquely hu-
man capabilities are easily overwhelmed by a large volume
of data. The role of the query-specific content-based com-
putation performed by Diamond is to reduce the apparent
scale of the problem confronting a human expert: that is,
to allow the expert’s knowledge and skills to focus on rela-
tively few objects (on the order of tens of objects rather than
thousands, millions, or more). An important consequence of
our human-in-the-loop assumption is that the content-based
computation does not have to be perfect to be useful. In fact,
one of the surprising outcomes of our experience with Di-
amond applications is that even simple and relatively un-
sophisticated domain-specific processing can be helpful in
scale reduction.

5 Unique server storage characteristics

Searchlet execution on a Diamond server exhibits certain
distinctive processing and I/O properties:

– Read-only, whole object I/O: After initial provisioning, a
corpus of data objects is never modified. Storage for the
persistent cache of filter execution results is distinct from
the corpus. Filter execution in a typical Diamond applica-
tion involves the entire contents of an object, rather than
just part of it.

J Internet Serv Appl

– Any-order I/O semantics: Since the Filter API uses an it-
erator model, a filter effectively says “Get next object”
rather than “Get object X.” The storage subsystem on a
server is hence free to return any object that has not been
presented before in the current search. For example, an
already-cached or already-prefetched object can be re-
turned in preference to an object that would require block-
ing on I/O. All that is guaranteed by the API is exactly-
once semantics within a search: no object is repeated, and,
unless a search is aborted, every object is presented once.
This degree of freedom is rarely available outside the Di-
amond framework.

– Interleaved search spaces: Diamond applications exhibit
a distinctive usage pattern that we call interactive data
exploration. A user constructs an initial searchlet out of
a set of filters, presents it to his Diamond application,
gets back a few results, aborts the current search, and
then modifies his searchlet (sometimes extensively) in the
light of these results. This iterative process continues un-
til the user finds what he is looking for, or gives up. The
user is effectively conducting two interleaved and tightly
coupled searches: one on the query space (the space of
all possible searchlets) and the other on the data space
(the contents of all data objects). This is consistent with
the well-known observation that asking exactly the right
question about complex data is often the key to a major
insight. Of course, figuring out the right question to ask is
itself a challenge!

– Embarrassing parallelism: It is hard to imagine a work-
load more friendly to server CPU and storage parallelism
than a typical Diamond application. Each object is indi-
vidually processed in its entirety, with no concurrency
control or ordering constraints across objects. Since ob-
jects are typically large, the net effect is to provide ample
opportunity for coarse-grained and easy-to-exploit paral-
lelism.

In combination, these Diamond workload characteristics
are at odds with key tenets of storage design today. We use
the term tenet here in accordance with its dictionary defini-
tion [19]: “a principle, belief, or doctrine generally held to be
true; especially one held in common by members of an or-
ganization, movement, or profession.” The storage commu-
nity has evolved these tenets over the course of many years
based primarily on workloads from databases, file systems,
web servers, scientific computing, and personal computing.
Diamond workloads force us to rethink these tenets, as dis-
cussed below in Sects. 5.1 to 5.5.

5.1 Invalid tenet: “Think Striping”

The I/O bandwidth advantages of disk striping are so well
known today that use of RAID arrays in servers is almost
instinctive for a system designer. The contrasting approach

of placing entire data objects on individual disks (referred
to as the JBOD or “just a bunch of disks” solution) is rare.
However, JBOD turns out to be the better fit for Diamond
workloads. To understand why, consider the two alternatives
in the context of discard-based search.

With JBOD, the OpenDiamond platform has full control
over the independent management of each disk. For exam-
ple, a worker thread can be assigned to each disk, so as to
sequentially scan that disk’s objects and pass them up to
the filters. In the case of a cached retrieval (objects already
known from a previous search to have passed a filter), each
worker can be given a list of objects to retrieve. Moreover,
there could be multiple workers assigned to the same disk,
each retrieving cached results on behalf of a particular client.
Because the I/O scheduling is completely under control of
the OpenDiamond platform, the number of worker threads
(level of concurrency) can be dynamically adjusted so as to
make the most efficient use of each disk.

Although RAID improves reliability and presents a sim-
pler programming model, there are no performance bene-
fits relative to JBOD for sequential scans. Both JBOD and
RAID-0 will see at most the full streaming bandwidth of the
disks. However, this bandwidth may be reduced in RAID-0
because of disk contention when concurrency is high. The
only case where RAID-0 will potentially outperform JBOD
is in the case of low concurrency during a random I/O re-
trieval. This would most typically happen when cache hits
occur for all filters in the current searchlet, and the cor-
responding object is fetched for return to the client. With
JBOD, this random I/O may be directed to only a sub-
set of the disks. With RAID-0, the I/O will naturally be
load-balanced over the entire disk array, and the low con-
currency will limit any disk contention among the clients.
However, because high concurrency is the common case
for discard-based search, this opportunity will not occur of-
ten on Diamond servers. Moreover, with additional effort, a
JBOD configuration can effectively achieve the same load-
balancing of random I/O by reordering the retrieval of ob-
jects with cache hits.

The reasoning that JBOD is a better fit than RAID for Di-
amond workloads is confirmed by the experimental results
shown in Fig. 6 for a synthetic discard-based search work-
load. These experiments were run on an Intel SSR212CC
storage system, with a 2.8-GHz Intel Xeon® CPU with hy-
perthreading and 1 GB of main memory, running Ubuntu
Linux 7.04. Ten 200-GB Seagate Barracuda 7200.10 disks
were used; five were on one controller in a JBOD configu-
ration, and the other five were on a second controller con-
figured as a hardware RAID array with 64-KB stripe units.
Each disk had an internal read-ahead cache and could reach
its full streaming bandwidth even with a single outstanding
I/O. The Y axis in the graphs of Fig. 6 is I/O efficiency:

J Internet Serv Appl

Fig. 6 Comparison of RAID and JBOD on Diamond servers

ratio of the measured bandwidth to the maximum theoret-
ical aggregate bandwidth of 370 MB/s for the five-disk ar-
ray. Each graph compares the I/O efficiency of JBOD and
RAID for a specific file size, with increasing concurrency
from left to right. The figure shows that JBOD outperforms
RAID for most combinations of file size and concurrency
level. In every case, the maximum efficiency (shown by the
arrow) is achieved by JBOD.

5.2 Invalid tenet: “Abort Is Rare”

As mentioned earlier, typical Diamond use involves two in-
terleaved search sequences, one on the query space and the
other on the data space. Almost never does a user wait for
his current searchlet to be applied to all data objects. Instead,
the user typically aborts a search as soon as he has seen a
sufficient number of results to guide him on how to improve
the current searchlet.

High probability of abort during sequential scan is rare
for storage systems. Scan access patterns typically arise in
data mining and indexing workloads that run to completion
on the entire dataset. Diamond’s unusual combination sug-
gests that I/O optimization strategies that expect to amortize
a high up-front cost over the large number of objects in a
dataset are unlikely to be effective. For example, building
up deep I/O and processing pipelines through prefetching
can be counterproductive if flushing these deep pipelines on
abort involves significant delays. This reasoning also applies
to the client-server interconnect. A large number of results
in flight from server to client instantly become junk when

a user aborts the current search. Until this junk is flushed,
the user will not see results from the execution of his next
searchlet. This problem is particularly severe in intercon-
nects with large bandwidth-delay products (that is, “long,
fat pipes”). The ability to rapidly flush junk from all inter-
connects between a user and data on server disks would be a
valuable capability. This requires out-of-band communica-
tion, which is unfortunately not available on today’s Inter-
net.

To confirm our understanding of this aspect of Diamond
workloads, we studied a number of users performing differ-
ent search tasks over collections of digital photographs [21].
We observed that, on average, users aborted their queries af-
ter viewing 36 objects and moved on to the next step of their
search. At the point of abort, each query had processed less
than 10% of the entire collection. As an illustrative example,
consider how one user performed the task of finding pictures
of a friend’s wedding. The user began her search by not-
ing that wedding pictures are likely to contain faces. While
the returned images contained faces, many of them were not
from the wedding. She added a color filter to match the wed-
ding dress. Unfortunately, the color was not accurate, and
the new query returned no relevant images. The user then
remembered that some of the wedding photos were taken
outdoors. She replaced the wedding dress filter with a new
green color filter to match grass. The new query returned a
photo that included the bride standing in front of the church.
Based on the color of the bride’s bouquet, the user created
another filter. Combined with the face filter, this produced
the highly relevant images shown in Fig. 7.

J Internet Serv Appl

Fig. 7 Searching for wedding pictures

5.3 Invalid tenet: “The App Knows Best”

Conventional wisdom has long held that applications have
deeper knowledge of their I/O access patterns than lower
system layers, and are therefore better positioned to opti-
mize the use of storage devices. As early as 1981, Stone-
breaker articulated the case against management of data-
base I/O by general purpose operating systems [24]. More
recently, Patterson et al. [22] advocated application assis-
tance for I/O prefetching. Today, hiding storage manage-
ment and I/O device details from applications is justified
primarily in terms of a simpler programming model and
the need to enforce security constraints. Suboptimal perfor-
mance is viewed as an acceptable price for these benefits.

Any-order semantics in Diamond leads to a powerful
counterpoint to this conventional wisdom. Rather than read-
ing a specific object, a Diamond application simply requests
the next object that has not been discarded by the search-
let. This gives the OpenDiamond platform, operating sys-
tem, and storage hardware the flexibility to process objects
in whatever order is most efficient for those layers. In other
words, I/O workload shaping is possible. The best disk I/O
throughput is achieved by reading objects sequentially start-
ing with the object closest to the current position of the disk
head. If multiple queries are started, any-order semantics al-
lows their read operations to be coalesced into a single re-
quest stream, thus avoiding device contention.

This concept, called bandwagon synchronization, is illus-
trated in Fig. 8. In Fig. 8(a), a query embodied in searchlet
X processes objects retrieved from a sequential scan of the
collection. In Fig. 8(b), a new query is started on the same
collection, appearing on the server as searchlet Y . Because
objects may be processed in any order, searchlet Y need not
begin with the first object in the collection. Instead, it jumps
on the I/O bandwagon at object i + 1, retrieved for search-
let X. Figure 8(c) shows another query joining the fray, ap-
pearing as searchlet Z. Previously cached results indicate
that object j passes searchlet Z. Any-order semantics al-
lows the runtime to proceed directly to object j to satisfy
the new query and simultaneously make the object available
to searchlets X and Y . In Fig. 8(d), the sequential scan re-
sumes with object j + 1. Bandwagon synchronization en-
sures that the storage subsystem receives a workload that is
highly sequential, keeping disk seeks to a bare minimum.

Figures 9(a) and 9(b) conceptually illustrate the perfor-
mance benefit of bandwagon synchronization by showing
the number of objects delivered to the application by two
queries, X and Y that start at times tx and ty , respectively.
Query Y can either introduce its own I/O requests or can
synchronize (jump on the bandwagon) with query X. The
graphs show the number of results produced as a function
of time. The time to deliver a result is determined by the
sequential and random bandwidth the storage system can
provide, the computational demands of the searchlet, and
the selectivity, or pass rate, of the query. The pass rates for
queries X and Y are denoted px and py . In this example,
px �= py . Given a maximum sequential read rate of B bytes
per second, the retrieval time for an object of size f is sim-
ply tseq = f/B . Accessing data nonsequentially (randomly)
will incur an average seek and rotational latency period, trp.
When accessing data randomly, the time to fetch an object
is trand = trp + f/B . Figure 9(a) shows the case in which
the two queries are not synchronized. Before ty , query X

reads data sequentially. After query Y begins, requests from
both queries will incur a random seek (trand) for each ac-
cess, lowering the bandwidth. Neither X nor Y is able to
read sequentially at that point. Figure 9(b) illustrates the two
queries with bandwagon synchronization: query Y is able to

Fig. 8 Bandwagon synchronization

J Internet Serv Appl

Fig. 9 Performance impact of
bandwagon synchronization

share the objects fetched by X. Now, both queries proceed
at sequential read rate without mutual interference.

Figures 9(c) and 9(d) show experimental validation of
these concepts for a synthetic workload on a single disk. The
graphs show the total objects delivered as a function of time.
These experiments used 1 MB objects, query pass rates of
10%, and no searchlet computation time. Two queries were
started five seconds apart. Although the queries had equal
selectivity, they did not pass the same objects. In the inde-
pendent synchronization case, each query employed its own
reader thread that scanned the repository from the begin-
ning. In the bandwagon synchronization case, the queries
were serviced from a single reader thread that scanned the
repository from the beginning. In Fig. 9(c), the rate of return
for query X flattens after query Y is started. Both queries
then return objects at essentially the same rate, limited by
the bandwidth of random access. In Fig. 9(d), both queries
are able to take advantage of sequential access bandwidth,
resulting in a twofold improvement over Fig. 9(c).

5.4 Invalid tenet: “Seeks Are Evil”

Conventional wisdom holds that random access on disks is
to be avoided because of the performance overhead asso-
ciated with seeks and rotational delay. As discussed in the
previous section, bandwagon synchronization can achieve
sequential access even when multiple users are concurrently
executing searchlets on a Diamond server. However, result

caching muddies this clear picture. The fortunate user who
gets a cache hit avoids searchlet execution on the corre-
sponding object. However, I/O is still needed to fetch the ob-
ject for transmission to the client. This may involve a seek
that disrupts sequential access for other users. Should the
seek be tolerated to benefit the fortunate user, or should that
user be forced to wait until the bandwagon of other users
reaches the object in question? How should this issue be
resolved on a Diamond server that aims for fairness to all
users?

Because discard-based search is intended to support in-
teractive data exploration, the dominant performance con-
sideration is response time rather than throughput. Users
need to see a sufficient number of results before they can
decide how to refine their searchlets. The pass rate of a
searchlet is the probability that an object will survive the
entire gauntlet of filters in the searchlet. It is a key factor in
determining the rate at which a Diamond user sees results.
Another factor is the average rate at which objects are pre-
sented to searchlets.

Figure 10(a) shows how these two factors interact. These
experimental results were based on the same hardware de-
scribed in Sect. 5.1. A synthetic workload generator refer-
enced 10-MB objects that were stored on a five-disk JBOD
array. The processing time of the filters in the searchlet is
assumed to be negligible. For the curve labeled “Sequen-
tial,” the files on the disk were sequentially scanned, with
the pass rate indicated on the X axis. For the curve labeled

J Internet Serv Appl

Fig. 10 Prioritizing accesses to
objects with cached results

“Random,” we assume the existence of an in-memory index
that allows direct seeks to objects whose filter execution re-
sults are already cached. The Y axis of Fig. 10(a) is in log
scale and shows the average rate of results seen by users.
At a pass rate of 100%, object data transfer is dominant.
Hence, random and sequential access both achieve the same
result interarrival time of roughly 28 ms. As the pass rate de-
creases, this time increases for both cases. For sequential ac-
cess, the increase is due to fewer objects passing through the
searchlet per time unit. Performance worsens rapidly as pass
rate drops below 1%: result interarrival time increases from
2.7 seconds to over 18 seconds for a pass rate of 0.1%. For
random access, lowering pass rate increases result interar-
rival time for a different reason. Assuming that result cache
hits occur for objects that are uniformly distributed over the
entire storage device, a low pass rate translates to a long
average seek length because the accessed objects are more
spread out. In Fig. 10(a), the maximum delay of 113 ms oc-
curs when pass rates drop below 1 in 50000 (i.e., 0.002%).
Our experience indicates that such low pass rates are not un-
usual in Diamond searches.

Based on this analysis, we can conclude that taking ad-
vantage of cached results is worthwhile even after account-
ing for the disruption of bandwagon synchronization that it
implies. This leads to the storage management policy that
was illustrated earlier in Figs. 8(c) and 8(d). Figure 10(b)
conceptually illustrates the performance impact of this pol-
icy. The figure shows query X in sequential scan initially.
When query Y arrives, all its cache hits are first retrieved.
This occurs during the period from ty to tc , lasting nc · trand,
where nc is the number of cached hits for Y . These objects
are also available to query X, generating px · (tc − ty)/trand

additional passing objects. Once the cache hits of Y have
been accessed, sequential scan resumes.

More generally, the cache hit phase for a new query im-
poses this penalty on the N other queries in progress:

(tc − ty)

N∑

i=1

(pi/tseq − pi/trand).

For the example in Fig. 10(b), the gain exceeds the penalty
when (px/trand + 1/trand) > (px/tseq + py/tseq). In other
words, this is a win only when the selectivity py is suffi-
ciently small. Experimental results that confirm the reason-
ing presented here can be found in the technical report by
Mummert et al. [21].

5.5 Invalid tenet: “Real Work Beats Speculation”

It is conventional wisdom that speculative work should al-
ways take a back seat to foreground work. This tenet is es-
pecially true in storage systems, as the performance cost of
erroneous speculation is high: usually at least the cost of a
disk rotation. As a result, storage systems tend to be conser-
vative when it comes to speculation.

Discard-based search can benefit from several forms of
speculative execution [10]. Intra-query speculation exploits
user think time to perform additional processing on objects.
Inter-query speculation exploits idle periods to execute pred-
icates likely to benefit future queries. If there is communal
locality among queries, then these speculation schemes can
produce results likely to be used in future queries. Intra-
query speculation does not generate any additional I/O—it
generates additional processing for objects already retrieved.
Inter-query speculation does generate additional I/O, but
only during idle periods. Since objects are processed one at a
time, there are many convenient points for interrupting spec-
ulative work. Furthermore, bandwagon synchronization al-
lows demand queries to synchronize on the objects retrieved
by inter-query speculation. From the perspective of the stor-
age system, this kind of computational speculation poses no
risk and is limited only by the CPU parallelism available.
The caching of results and attributes means that even specu-
lative work that appears to be wasted relative to the current
search is not really wasted in a larger context.

J Internet Serv Appl

6 Kaiten-zushi storage

What would a clean-sheet design of a storage system for
Diamond servers look like? Based on the storage character-
istics discussed in Sect. 5, we suggest that an apt metaphor
for such a design is that of a Japanese “conveyor belt sushi”
or “kaiten-zushi” restaurant, as described in Wikipedia [25]:

Kaiten-zushi is a sushi restaurant where the plates
with the sushi are placed on a rotating conveyor belt
that winds through the restaurant and moves past
every table and counter seat. Customers may place
special orders, but most simply pick their selections
from a steady stream of fresh sushi moving along the
conveyor belt.

The strongly sequential nature of a discard-based search
workload gives rise to the metaphor, as keeping disk re-
quests sequential is straightforward. We assign to each disk
in the system a single reader thread that continually accesses
objects in sequential order (the equivalent of the conveyor
belt carrying sushi to patrons). As objects are fetched from
disk, filters for the active queries are applied to each ob-
ject. CPU-bound filters (the equivalent of patrons who eat
sushi more slowly than it arrives) will process objects less
quickly than they are fetched from disk but will always have
a new object available to process when they complete. I/O-
bound filters (the equivalent of patrons who can eat sushi
more quickly than it arrives) will be able to process each
object as it is fetched from disk.

Queries for which there are cached results can be ser-
viced by seeking the disk directly to the location of those
results. At first glance, it would seem that a seek-based
fetch process that favors cached results would result in better
performance than a sequential fetch process. However, if a
query is not highly selective, then it is often more efficient to
process sequentially-fetched objects for which there are no
cached results as they are fetched from disk rather than seek
to the locations of cached results. In the metaphor, process-
ing cached results is equivalent to placing special sushi or-
ders rather than waiting for a particular piece to arrive on the
conveyor belt. (A more extreme version would be a patron
getting up from his seat and quickly moving to another seat
in front of which is his desired piece of sushi.) If a patron is
very selective, a particular piece of sushi could arrive more
quickly by special order. On the other hand, if a patron is
less selective, then he can be satisfied more quickly by just
waiting for sushi from the conveyor belt.

7 Conclusion

Our ability to record real-world data has exploded. Huge
volumes of medical imagery, surveillance imagery, sensor

feeds for the earth sciences, anti-terrorism monitoring, and
many other sources of complex data are now captured rou-
tinely. The capacity and cost of storage to archive this data
have kept pace. Sorely lacking are the tools to extract the
full value of this captured data.

The goal of Diamond is to help domain experts creatively
explore large bodies of complex, nonindexed data. We hope
to do for complex data what spreadsheets did for numeric
data in the early years of personal computing: allow users to
“play” with the data, easily answer “what if” questions, and
thus gain deep, domain-specific insights. In this paper, we
have described how discard-based search can be a powerful
tool for this task. We have discussed the unique strengths
of discard-based search relative to indexed search and pre-
sented its unique server storage characteristics. We view
pure indexed search and pure discard-based search as the ex-
tremes of a continuum; specific instances of result caching
and scoping together define many intermediate points in this
continuum.

The central premise of our work is that the sophistica-
tion of queries we are able to pose about complex data will
always exceed our ability to anticipate, and hence precom-
pute indexes for, such queries. While indexing techniques
will continue to advance, so will our ability to pose ever
more sophisticated queries—our reach will always exceed
our grasp. It is in that gap that the Diamond approach will
have most value.

Acknowledgements This research was supported by the National
Science Foundation (NSF) under grant number CNS-0614679. De-
velopment of the MassFind and PathFind applications described in
Sects. 3.2 and 3.3 was supported by the Clinical and Translational
Sciences Institute of the University of Pittsburgh (CTSI), with fund-
ing from the National Center for Research Resources (NCRR) under
Grant No. 1 UL1 RR024153. The FatFind and StrangeFind applica-
tions described in Sects. 3.4 and 3.5 were developed in collaboration
with Merck & Co., Inc. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the authors and
do not necessarily represent the views of the NSF, NCRR, CTSI, In-
tel, Merck, or Carnegie Mellon University. OpenDiamond is a regis-
tered trademark of Carnegie Mellon University. Xeon is a registered
trademark of Intel Corporation. All unidentified trademarks remain the
properties of their owners.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Acharya A, Uysal M, Saltz J (1998) Active disks: programming
model, algorithms and evaluation. In: Proceedings of the interna-
tional conference on architectural support for programming lan-
guages and operating systems

2. von Ahn L, Dabbish L (2004) Labeling images with a computer
game. In: Proceedings of the SIGCHI conference on human fac-
tors in computing systems

J Internet Serv Appl

3. Amiri K, Petrou D, Ganger G, Gibson G (2000) Dynamic function
placement for data-intensive cluster computing. In: Proceedings of
the USENIX technical conference

4. Arpaci-Dusseau R, Anderson E, Treuhaft N, Culler D, Hellerstein
J, Patterson D, Yelick K (1999) Cluster I/O with river: making the
fast case common. In: Proceedings of input/output for parallel and
distributed systems

5. Avnur R, Hellerstein J (2000) Eddies: continuously adaptive query
processing. In: Proceedings of SIGMOD

6. Dean J, Ghemawat S (2004) MapReduce: simplified data process-
ing on large clusters. In: Proceedings of the USENIX symposium
on operating systems design and implementation, San Francisco,
CA

7. Dean J, Ghemawat S (2008) MapReduce: simplified data process-
ing on large clusters. Commun ACM 51(1)

8. Duda R, Hart P, Stork D (2001) Pattern classification. Wiley, New
York

9. Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom
B, Gorkani M, Hafner J, Lee D, Petkovic D, Steele D, Yanker P
(1995) Query by image and video content: the QBIC system. IEEE
Comput 28(9)

10. Gibbons P, Mummert L, Sukthankar R, Satyanarayananan M
(2007) Just-in-time indexing for interactive data exploration. Tech
Rep CMU-CS-07-120, Computer Science Department, Carnegie
Mellon University, Pittsburgh, PA

11. Goode A, Sukthankar R, Mummert L, Chen M, Saltzman J, Ross
D, Szymanski S, Tarachandani A, Satyanarayanan M (2008) Dis-
tributed online anomaly detection in high-content screening. In:
Proceedings of the 2008 5th IEEE international symposium on
biomedical imaging, Paris, France

12. Goode A, Chen M, Tarachandani A, Mummert L, Sukthankar R,
Helfrich C, Stefanni A, Fix L, Saltzmann J, Satyanarayanan M
(2007) Interactive search of adipocytes in large collections of digi-
tal cellular images. In: Proceedings of the 2007 IEEE international
conference on multimedia and expo (ICME07), Beijing, China

13. Goode A, Satyanarayanan M (2008) A vendor-neutral library
and viewer for whole-slide images. Tech Rep CMU-CS-08-136,
Computer Science Department, Carnegie Mellon University, Pitts-
burgh, PA

14. Hunt G, Scott M (1999) The Coign automatic distributed parti-
tioning system. In: Proceedings of OSDI

15. Huston L, Sukthankar R, Wickremesinghe R, Satyanarayanan M,
Ganger GR, Riedel E, Ailamaki A (2004) Diamond: a storage ar-
chitecture for early discard in interactive search. In: Proceedings
of the 3rd USENIX conference on file and storage technologies,
San Francisco, CA

16. Keeton K, Patterson D, Hellerstein J (1998) A case for intelligent
disks (IDISKs). SIGMOD Rec 27(3)

17. Kim E, Haseyama M, Kitajima H (2002) Fast and robust ellipse
extraction from complicated images. In: Proceedings of IEEE in-
formation technology and applications

18. Lowe D (2004) Distinctive image features from scale-invariant
keypoints. Int J Comput Vis

19. Merriam-Webster (2007) Merriam–Webster online search. http://
mw1.merriam-webster.com/dictionary/tenet

20. Minka T, Picard R (1997) Interactive learning using a society of
models. Pattern Recognit 30

21. Mummert L, Schlosser S, Mesnier M, Satyanarayanan M (2007)
Rethinking storage for discard-based search. Tech Rep CMU-CS-
07-176, Computer Science Department, Carnegie Mellon Univer-
sity, Pittsburgh, PA

22. Patterson RH, Gibson GA, Ginting E, Stodolsky D, Zelenka J
(1995) Informed prefetching and caching. In: Proceedings of the
fifteenth ACM symposium on operating systems principles, Cop-
per Mountain, CO

23. Riedel E, Gibson G, Faloutsos C (1998) Active storage for large-
scale data mining and multimedia. In: Proceedings of the interna-
tional conference on very large databases

24. Stonebreaker M (1981) Operating system support for database
management. Commun ACM 24(7)

25. Wikipedia (2007) Conveyor belt sushi. Wikipedia, The Free En-
cyclopedia. [Online: accessed 3-September-2007]

26. Yang L, Jin R, Mummert L, Sukthankar R, Goode A, Zheng B,
Hoi SC, Satyanarayanan M (2010) A boosting framework for
visuality-preserving distance metric learning and its application
to medical image retrieval. IEEE Trans Pattern Anal Mach Intell
32(1)

27. Yao A, Yao F (1985) A general approach to D-dimensional geo-
metric queries. In: Proceedings of the annual ACM symposium on
theory of computing

http://mw1.merriam-webster.com/dictionary/tenet
http://mw1.merriam-webster.com/dictionary/tenet

	The unique strengths and storage access characteristics of discard-based search
	Abstract
	Introduction
	Background and related work
	Early discard
	Diamond architecture
	Result and attribute caching on servers
	Relationship to MapReduce and other work

	Diamond applications
	Unorganized digital photographs
	Lesions in mammograms
	Digital pathology
	Adipocyte quantitation
	Online anomaly detection

	Unique strengths of discard-based search
	Dynamic tuning of precision and recall
	Dynamic incorporation of new knowledge
	Ability to leverage user expertise

	Unique server storage characteristics
	Invalid tenet: "Think Striping"
	Invalid tenet: "Abort Is Rare"
	Invalid tenet: "The App Knows Best"
	Invalid tenet: "Seeks Are Evil"
	Invalid tenet: "Real Work Beats Speculation"

	Kaiten-zushi storage
	Conclusion
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

