

Figure 1: Theft caught in the background of a family photo
(Source: CNN [2]). Although this particular photo was not
taken with a smartphone, it exemplifies the opportunistic
value of photos taken by others

Opportunistic Content Search of Smartphone Photos

Technical Report TR0627-2011, Rice University

Ardalan Amiri Sani *, Wolfgang Richter §, Xuan Bao †, Trevor Narayan †,
Mahadev Satyanarayanan §, Lin Zhong *, Romit Roy Choudhury †

* Rice University, § Carnegie Mellon University, † Duke University

ABSTRACT
Photos taken by smartphone users can accidentally contain content
that is timely and valuable to others, often in real-time. We report
the system design and evaluation of a distributed search system,
Theia, for crowd-sourced real-time content search of smartphone
photos. Because smartphones are resource-constrained, Theia
incorporates two key innovations to control search cost and im-
prove search efficiency. Incremental Search expands search scope
incrementally and exploits user feedback. Partitioned Search lev-
erages the cloud to reduce the energy consumption of search in
smartphones. Through user studies, measurement studies, and
field studies, we show that Theia reduces the cost per relevant
photo by an average of 59%. It reduces the energy consumption of
search by up to 55% and 81% compared to alternative strategies of
executing entirely locally or entirely in the cloud. Search results
from smartphones are obtained in seconds. Our experiments also
suggest approaches to further improve these results.

Author Keywords
Crowd-sourced photos, mobile systems, energy efficiency.

1. Introduction
Modern smartphones allow us to take photos on the go, capturing
whatever we find interesting. We do selectively share some of
them with friends and even the public, e.g., through social network
websites such as Facebook and Flickr. However, the majority of
smartphone photos will not be shared, or possibly even transferred
to another computer. Our work was motivated by many important
scenarios in which photos captured by a smartphone user become
vitally important to others, often in real-time. For example, when a
child is lost during a holiday parade, photos by smartphone users
nearby become very valuable to the police and parents [1]. As
another example, a family photo may reveal a theft [2] (see Figure
1). As yet another example, a sports reporter would like to find the
smartphone photos taken from the best angle at the time of a goal
during a soccer game. The key question is: How can an interested
party find relevant smartphone photos, in real-time? Relevance of
a photo is not only determined by the metadata of the photo (e.g.,
time and location), but also by its content (e.g., “a girl with a red
coat”).

Our answer to this question is a distributed search service called
Theia. Theia considers registered smartphones as distributed data-
bases and allows a third party to compose a query and pushes it
into these smartphones to find out photos that match the query.
The query is a piece of code that examines not only the metadata

but also the content of a photo. We focus on architecture and sys-

tem design of Theia here, deferring issues such as incentive
mechanisms and privacy control for future. In particular, we focus
on how Theia helps its users control search cost and improve
search efficiency. Unlike existing search systems whose databases
are hosted by powerful data centers, Theia’s databases are hosted
by resource-constrained smartphones. Executing a query inside a
smartphone can be resource-intensive and incur high cost to the
smartphone owner that will eventually be paid by the search user.
In view of the large number of smartphones Theia may search, the
cost to the search user can be significant.

Theia incorporates two key innovations toward solving the above
problem. Incremental search allows the search user to submit a
cost budget along with a query and Theia will limit the search
scope according to the budget. It tracks which photos have been
searched by the query and allows the search user to effectively
expand the scope by submitting the query again with a new
budget. As in any search system, a search result, or a matched
photo, is not necessarily what the search user is looking for or
relevant. The objective of the incremental search is to help a
search user find relevant photos with lowest cost per relevant
photo. Partitioned search leverages the cloud to reduce the execu-
tion energy cost of a query in a smartphone. Based on the selectiv-
ity and energy cost of the predicates in the query and the wireless
energy cost of offloading a photo, Theia dynamically identifies the
predicates to be evaluated in the cloud and selectively offloads
photos to reduce the energy cost of the smartphone.

2

Theia Gate Many Theia Mobiles

Theia Server

Query Distributor

Partition Agent

Data Cache

Result Collector
Search Engine

Data
Manager

Energy
Profiler

query

results

Input
photo

accept/reject

photo

photo

photo

accept/reject

AND

RGB
thresholding

Texture
matching

Face
detection

accept/reject

accept/reject

Figure 3: Architecture of Theia and information flow be-
tween its components

Figure 3: An example Theia query (Query_1) that detects
photos with a face and a large cloudy sky

Figure 4: Examples of smartphone photos accepted by
Query_1 from Flickr

We describe a complete, working prototype of Theia that consists
of three components: Theia Server that distributes queries and runs
in the cloud, Theia Mobile that executes queries and runs in regis-
tered smartphones, and Theia Gate, that allows a search user to
compose and revise queries to examine the content of photos.
Theia Server and Theia Mobile collaborate to implement incre-
mental and partitioned search.

We report a three-part evaluation. First, a user study with 10 par-
ticipants on a competitive search task spanning 85 emulated
smartphones shows that Theia’s incremental search reduces the
cost per relevant photo by an average of 59%, and helps to retrieve
44% more relevant photos. Second, a measurement study demon-
strates that Theia’s partitioned search reduces the energy con-
sumption of executing the search in the smartphone by up to 55%
and 81% compared to alternative strategies of executing entirely
locally or entirely in the cloud. The dynamic partition feature also
enables Theia to adapt to changing network conditions. Finally, a
field study with a testbed of 6 Android smartphones with photos
from smartphones of real users show that Theia returns results
with a median latency of seconds.

The rest of the paper is organized as follows. We will first present
the Theia Architecture and then provide the key technical innova-
tions of Theia, Incremental Search and Partitioned Search. We will
present a full Prototype Implementation of Theia with Android
smartphones. We offer the three-part Evaluation of Theia. We will
also discuss Related Work before Conclusion.

2. Theia Architecture
As illustrated in Figure 2, Theia consists of three main compo-
nents, Theia Mobile on smartphones that elect to participate, Theia
Server on powerful servers in the cloud, and Theia Gate at the
search user. Today, Theia Gate runs on laptops and desktops, but
we anticipate creation of a smartphone implementation in the fu-
ture. Using Theia Gate, a user generates a search query and sub-
mits it with a budget to Theia Server. Theia Server then distributes
the query to selected smartphones according to the query’s budget
and execution history. At smartphones, Theia Mobile executes the
query on the photos in the device and streams the photo results to
Theia Server. Theia Gate streams results from Theia Server. The
streaming aspect is important: the user starts seeing results even
before query execution completes.

2.1 Theia Query
A Theia query is generated by the search user using Theia Gate. It
takes a photo as input and outputs accept or reject. It is a logic
combination (AND/OR) of predicates. A predicate takes a photo
as input and outputs accept or reject, similar to the query itself.

A predicate is a piece of code that examines a specific feature in
the content of the photo, e.g., people’s faces, or specific metadata

of the photo, e.g., time and location. Two important properties of a
predicate are selectivity and cost. The selectivity of a predicate is
the probability for photos to be accepted by it. The selectivity of
two predicates may be correlated. This correlation can be quanti-
fied by the conditional selectivity of predicates. If A1 and A2 are
the sets of photos accepted by predicates p1 and p2, respectively,

the conditional selectivity s(p1|p2) is |A1ځA2| / |A2|. It is the prob-

ability that p2 accepts the photos that p1 accepts. The cost of predi-
cate, c(p), is the amount of the resources consumed to evaluate p
on a typical photo.

In this work, we focus on the smartphone energy consumption as
the cost metric. Executing a query in a smartphone can be energy-
hungry. For example, our measurements show that executing a
face detection query on 100 photos in Nexus One costs about 300
Joules, which is 1.6% of the total battery capacity.

Figure 3 shows an example query, called Query_1, which looks
for photos that contain people’s faces with a large cloudy sky
background. This query has three predicates. The face detection
predicate finds faces in photos. Texture matching examines photos
with texture similar to a cloudy sky texture. RGB thresholding
only accepts the photos that have high blue color intensity to en-
sure the large size of the sky background. These three predicates
have decreasing cost. Figure 4 shows two examples of smartphone
photos accepted by this query. The patches in the figure, which
contain people’s faces and a cloudy sky area, show results of the
face detection and texture matching predicates. The RGB thresh-
olding predicate has favored a large sky.

2.2 Theia Server
Theia Server runs in powerful computers in the cloud. It has four
modules: Query Distributor, Result Collector, Data Cache, and
Partition Agent. Query Distributor distributes queries and main-
tains the state information of a query and its refinements. Result
Collector gathers search results for the search user to retrieve.
Data Cache stores photos offloaded from smartphones from previ-

3

Input
photo

accept

reject reject

accept

reject

RGB
thresholding

Texture
matching

Face
detection

accept

Figure 5: Ordered execution of Query_1

ous searches. Because executing a query with photos in Data
Cache is faster and incurs negligible cost compared to those in a
smartphone, Theia always starts executing a query by using photos
in Data Cache. Finally, Partition Agent works with Theia Mobile
to execute offloaded search tasks from smartphones.

Theia Server enforces an incentive mechanism and a cost model
on other Theia components. Theia requires such incentive mecha-
nism and cost model in order to charge a search user for executing
a query, and in order to properly motivate smartphone users to
participate and to compensate them for the search energy cost and
for valid search results. Theia is not tied to any particular incentive
mechanism or cost model, although it assumes certain properties
for them, as will be described in Section Incremental Search.

2.3 Theia Mobile
Theia Mobile runs inside a smartphone. It has three modules:
Search Engine, Energy Profiler, and Data Manager. Search En-
gine receives queries from Query Distributor in Theia Server and
executes them on photos. It also collaborates with Partition Agent
in Theia Server to dynamically partition the execution of a query
in an energy-efficient manner. Moreover, Search Engine reports
identified photos along with their matching score to Result Collec-
tor in Theia Server. Energy Profiler produces the required energy
measurements for Search Engine. Data Manager maintains the
searchable photos in the device. It also stores the state information
about previous searches for the stored photos.

2.4 Theia Gate
Theia Gate is where the search application is realized. It provides
mechanisms for users to compose secure queries, to choose the
cost budget, and to provide feedback for Theia. It also streams and
visualizes search results and feedback from Theia Server as soon
as some results are available.

3. Incremental Search for Cost Control
Searching into others’ smartphones cannot be free because it con-
sumes precious smartphone resources, e.g., battery; and because
there must be an incentive for smartphone owners to participate.
Instead of executing a query on all smartphones and all photos by
default, Theia enables a search user to expand the search scope
incrementally. A Theia user always submits a cost budget along
with a query. Coupled with a cost model, the budget limits the
scope of the execution, i.e., numbers of smartphones and photos,
so that the search user can provide feedback or refine the query
before expanding the scope.

Theia requires a cost model to charge a search user for executing a
query and to compensate the smartphone users for allowing the
search. The cost model is enforced by Theia Server. While Theia
can support a variety of cost models, it makes two assumptions.
First, Theia assumes the cost of executing a query in a smartphone
consists of three parts: a flat entry cost per smartphone, a cost per
searched photo, and a cost per search result. Second, Theia as-
sumes that the cost per search result is significantly larger (by an
order of magnitude) than the other two parts. This cost structure
not only motivates a search user to devise a good query but also
rewards smartphone users who produce interesting photos. It re-
flects the cost of accessing other’s photos as the dominant cost.

Given the budget, Theia Server first determines N, the number of
smartphones to search. If N is too large, most of the budget goes to
the per-smartphone flat cost. If N is too small, all the results come
from only a few devices, which can reduce the chance of finding
relevant photos. Theia uses a simple tradeoff heuristic that allows
a fixed fraction of the budget to go to the per-device flat cost.

Once the number of smartphones to search is determined, Theia
must determine which smartphones to search and divide the
budget equally between the selected smartphones. When a query is
submitted for the first time, Theia selects smartphones randomly.
When the query is submitted again, Theia gives priority to the
devices from which search results have been marked by the search
user as interesting. This is based on a heuristic that if the search
user finds one photo from a smartphone interesting, he is more
likely to find more interesting photos from the same smartphone
than from a randomly selected smartphone. We refer to this prop-
erty as relevance locality, which will be discussed further later.

Once a smartphone is selected and the per-smartphone budget is
determined, Theia first searches all the photos offloaded from the
smartphone in Theia Server Data Cache and then randomly selects
photos from the smartphone to search until the designated budget
is reached. When randomly selecting photos, Theia skips photos
that have been searched before with the same query or have been
cached on Theia Server.

As the execution of a query goes on, the matched photo will be
streamed to Result Collector in Theia Server along with their
matching score. The matched photos will also be saved in Theia
Server Data Cache to serve future searches.

The Theia Gate streams the search results from Theia Server along
with information regarding the performance of the query, and
visualizes the feedback. Streaming begins as soon as some results
are available, even before the query execution completes. Theia
provides two measurements so that the user can assess his query.
The selectivity of each predicate helps user to identify over-
selective and under-selective predicates. The matching scores of
the returned photos for each predicate help users to refine the
predicates.

3.1 Keeping State Information for Incre-
mental Search
To skip searched photos when the same query is submitted again,
Theia keeps state information for photos, if they have already been
searched by that query. Theia identifies a query uniquely by an
integer-type ID, which is generated by Theia Gate. Search Engine
in Theia Mobile creates a SQLite database for each query to store
the names of the photos that have been searched before or cached
on Theia Server. We call this database query state database.

Since state information has to be looked up and stored for each
photo searched, this design might seem inefficient both computa-
tion-wise and storage-wise. But it is indeed quite efficient in prac-
tice for two reasons. First, smartphone owners will mostly have
less than thousands of photos in their storage. Second, since search
is incremental, not all of the photos in the device will be searched
by each query. Finally, most queries have short lifespan, and their
state information can be discarded soon, e.g., by the end of the
day.

We profiled the computation and storage overhead of such lookup
and store in our implementation of Theia Mobile. Our measure-
ments show that the lookup, which has a complexity of O(n), takes

4

Figure 6: XML representation of a face detection query.
Certain details are suppressed for clarity

less than 10ms and 30ms for database size of up to 1000, and
10000, respectively. Store, which has a complexity of O(1), takes
less than 30ms. Since executing the predicates in smartphones
typically takes hundreds or thousands of milliseconds, we consider
such overheads to be negligible. Also, databases of the mentioned
sizes occupy less than 50 KB and 300 KB, respectively, which is
also negligible compared to the storage capacity of smartphones.

4. Partitioned Search for Energy Efficiency
Executing queries in smartphones incurs high energy consumption
not only because predicates can be computation-intensive but also
because there can be many photos in the device to search. One
obvious solution for reducing the energy cost of a compute-
intensive task on mobile devices is to execute the task in the cloud,
also known as offloading. However, the cloud does not have the
photos in the smartphone and therefore, these files need to be up-
loaded too. Since there can be many photos in the device, simply
offloading all of them, or full offloading, may not necessarily be
the most energy-efficient. Therefore, we investigate the possible
merits of offloading only part of the query, or partitioned search.
With partitioned search, some of the predicates are evaluated lo-
cally in the smartphone and the rest are evaluated in Theia Server.
Only the photos accepted by all of the local predicates are off-
loaded to Theia Server for further evaluation. In other words, only
those photos that show promise are offloaded for further process-
ing.

4.1 Problem Definition
Given a query, the partition problem is to identify the order of
evaluation for the query’s predicates and the first predicate to
offload so that the total local energy cost is minimized. The order
of evaluation for the predicates is important for efficiency because
photos rejected by a predicate do not have to be evaluated with a
later predicate [3] (Figure 5). In the case of partition, if a photo is
rejected before the first offloaded predicate, the photo does not
need to be offloaded to the cloud. On the other hand, if the photo
is not rejected before the first offloaded predicate, it will be evalu-
ated with the remaining predicates on Theia Server.

4.2 Partition Algorithm
Finding the optimal partition is not trivial. The energy cost of a
partitioned search is determined by the energy cost of network
activity, predicate selectivity, and predicate cost, which have to be
estimated at runtime. Theia solves this problem by a two-phase
solution. The training phase estimates the cost of predicates and
wireless transfer by evaluating all the predicates on a few photos
locally and offloading a few photos to Theia Server. With the cost
estimations, the Search Engine determines an initial partition. The
evaluation phase starts with the initial partition. It updates the
predicate cost and estimates predicate selectivity with adaptive
sampling [4] with each photo evaluated. The partition is updated
after evaluating every five photos.

When creating a partition, Theia first determines the order of
evaluation for all the predicates in the query and then determines
the first predicate to offload. We describe these steps below.

4.2.1 Predicate Ordering
Theia leverages an important database concept, conditional rank
[5]. Given the execution order of the predicates, the conditional
rank of a predicate is defined as the cost of the predicate divided
by one minus the selectivity of the predicate, conditioned on the
predicates that come before in the order. A simple heuristic to
approach the optimal execution order is to ensure that the condi-
tional ranks of the predicates are in the same order as the predi-

cates. This heuristic is based a key observation that if the order of
execution is optimal, the conditional ranks of the predicates are in
the same order. Database research [6] has shown that this heuristic
achieves a performance no worse than ~2x of the optimal solution
for queries with less than 20 predicates; and it achieves the opti-
mal in most of the cases.

Since Theia queries usually have a small number of predicates, we
adopt this conditional rank-based heuristic and our experience also
confirms its effectiveness. In the evaluation phase, Theia updates
the cost and conditional selectivity of the predicates in their cur-
rent order of execution after evaluating every photo. After evaluat-
ing every 5 photos, Theia checks to see whether enough samples
are available [4] to meaningfully estimate the conditional ranks.
Theia then updates the conditional ranks of those predicates for
which enough samples are available, and reorders them based on
their updated conditional ranks. It then discards the previous con-
ditional ranks of the reordered predicates – since they are not valid
anymore in the new order – and acquires new estimates by evalu-
ating more photos.

4.2.2 Partition Point
Once the execution order of predicates is determined as above,
Theia determines the partition point, or the first predicate in the
order to offload, by using a special predicate, pw [7]. pw has a cost
equal to the average energy cost of offloading a photo under cur-
rent networking conditions, a selectivity of zero, and is independ-
ent from the predicates in the query. Therefore, the conditional
rank of pw is always equal to the wireless transmission cost.

To find the optimal partition point, Theia simply finds the order of
execution of all the predicates including pw using the heuristic
discussed above. The predicates before pw are evaluated locally
and those after pw are offloaded.

The cost of offloading a photo directly affects the partition point.
Since the wireless connectivity is highly variable due to mobility,
the optimal partition point can change quickly. However, since pw
is independent from the rest of the predicates, its position can be
changed without disturbing the order of execution of the query
predicates. Therefore, upon detecting a change in the wireless
cost, Theia can rapidly calculate the new optimal partition by
merely changing the position of the wireless predicate. We call
this dynamic partition.

5

Figure 7: A snapshot of Theia Gate in use. The search user
is using a face detection query

5. Prototype Implementation

Theia Query
We have implemented the query in two parts: the query specifica-
tion, and the predicate objects. The query specification is an XML
file that specifies the query ID and the predicates in the query.
Figure 6 shows the XML representation of a face detection query,
which has a face detection predicate only. The query specification
also determines the predicate objects that must to be used for exe-
cuting the predicates. For example, libface-predicate.so
in the <arguments> element is the predicate object for the face
detection predicate, as shown in Figure 6. The predicate objects
are implemented in C or Java, as specified in the XML file in the
<predicate> element. The C predicates are shared objects that
are cross-compiled for the instruction set used in target smart-
phones. The Java predicates are JAR files. Android OS, which we
have used in our current prototype, supports both types of predi-
cates.

We construct three example queries that we consistently use in our
experiments with Theia. Query_1 is shown in Figure 3. Query_2 is
constructed from Query_1 by removing the texture matching
predicate, and Query_3 is constructed from Query_2 by removing
the RGB thresholding predicate, and therefore is a face detection
query.

Theia Server
We have implemented the modules of Theia Server in various
programming languages and hosted it in a server on a university
campus. We have implemented Query Distributor, Result Collec-
tor, and part of Data Cache in PHP and run them on an Apache
web server. We also use MySQL databases in these modules to
store the state information for incremental search. We have im-
plemented Partition Agent and the other part of Data Cache in
Java and run them on a Jetty web server.

Query Distributor uses two methods to send push notifications to
the Search Engine in Theia Mobile. The main method is Android
Cloud to Device Messaging (C2DM) [8]. We also use SMS push
notification as a backup method, since we observed that C2DM
fails occasionally.

To implement partitioned search, Search Engine in Theia Mobile
employs a multipart HTTP request to send offloaded predicates
and photos to Partition Agent, which then executes the predicates
on the photo and returns the accept/reject result to the device in
the HTTP response. Since the Partition Agent has access to all the
predicate objects in Theia, the search engine has to enclose only
the query specification in XML and a list of predicates to execute
remotely (a total of few kilobytes only) in the HTTP request.

For the cost model, we use 1, 1, and 10 units for the flat cost, the
cost per searched photo, and the cost per search result, respec-
tively. These values are consistent with Theia’s assumption that
the cost per search result be significantly larger than the other two
costs.

Theia Mobile
We have implemented Theia Mobile for Android-based mobile
systems. Search Engine can execute both C and Java predicates. It
evaluates the C predicates with an executable, predicate-runner,
that loads the predicate object using dynamic loading. Search En-
gine evaluates Java predicates using Java Reflection.

We have implemented a simple yet effective energy profiler that
constructs a system energy model with linear regression based on

the execution time of a predicate and wireless transfer time. Meas-
urements show that the constructed energy model has an average
error of 3% and 13% in estimating the energy cost of predicate
evaluation and that of transmitting photos, respectively.

5.1 Theia Gate
We have implemented Theia Gate in Java with a graphical user
interface. Theia Gate provides a set of predicate templates that the
search user can leverage to generate queries. Currently, Theia Gate
supports multiple predicate templates including face and body
detection that use Haar feature based classifiers, texture matching,
RGB thresholding, and RGB histogram matching. An RGB histo-
gram matching predicate looks for photos that have similar RGB
histogram characteristics as the input patch. Examples of the func-
tionality of the rest of the predicates were explained in Section
Theia Architecture.

To leverage the incremental search supported by Theia, Theia
Gate allows a search user to assign the budget for a query. It re-
trieves the query performance feedback from Theia server and
presents it to the search user in the end of each search. Finally,
Theia Gate allows the search user to modify the predicates by
changing the parameters of the templates.

Figure 7 shows a snapshot of Theia Gate. The search user is using
a face detection query. He has assigned a budget in the first
search, and has received 7 matching photos, all relevant except for
the first one. 177 photos are searched over 21 smartphones accord-
ing to the feedback on the right column, and the status bar in the
bottom.

6. Evaluation
We evaluate Theia’s effectiveness in helping search users reduce
cost and in improving the energy efficiency of searching photos
inside smartphones, through both user study and measurement.
We also demonstrate the real-time performance of Theia using a
field trial with six smartphones and photos from real smartphone
users.

6.1 User Study of Incremental Search
We evaluate how well the incremental search feature of Theia
helps search users reduce the cost of search and retrieve better
results. We conduct a user study with 10 participants to use Theia
Gate and perform a search task.

6

Lower Bound Single Pass Theia
0

50

100

150

200

C
o

s
t

P
e

r
R

e
le

v
a

n
t

P
h

o
to

With feedback Without feedback

0

10

20

30

40

50

S
u

c
c

e
s

s
 R

a
te

 (
%

)

(a) (b)

Figure 8: (a) Search cost per relevant photo (bar shows the
average for Theia over all participants and error bar
shows min-max), (b) Effectiveness of using search user
feedback in selecting smartphones

6.1.1 Apparatus, Data Set, Participants, and Proce-
dure
To evaluate incremental search in a large scale, we emulate 85
smartphones with Theia Mobile. Each emulated smartphone is a
PHP script that can run on any PC. We implement the script so
that the search speed of the emulated device is very close to that of
a real smartphone with the wireless link considered. This ensures
that the interactive experience with the emulated device is very
close to that with a real one.

Each emulated smartphone is loaded with smartphone photos cap-
tured by a Flickr user. We crawled Flickr.com to collect public
photos taken with smartphones including various iPhone and HTC
smartphones. We collected 85 users with a total 3055 photos to
emulate 85 Theia Mobiles.

We recruited 10 participants for the user study. Eight of the par-
ticipants are male. All participants are students from a US private
university with an average age of 24 and sciences and engineering
background. We recruited the participants through flyer and direct
contact, and compensated each with a $20 gift card.

The user study consisted of training, competition in a search task,
and interview. We first trained a participant to use Theia Gate for
about 25 minutes. We instructed them about the cost model, how
to compose and revise queries, how to set the search budget, and
how to provide feedbacks in Theia Gate. Then, we asked the par-
ticipant to find 20 photos with cloudy sky using the emulated
setup described above. To properly motivate the participants, we
told them that they are in a competition with other participants
based on the total search cost to find the 20 photos. The partici-
pants were allowed to set the budget and revise queries freely.
After the participants found the 20 photos, they answered a survey
about their experience with Theia and were interviewed further if
necessary.

6.1.2 Search Cost
Our results show that Theia’s incremental search enables all par-
ticipants to significantly reduce the cost per relevant photo. Al-
though the specific cost model described in Section Prototype
Implementation is used for the user study, we expect the conclu-
sion holds for all cost models in which the cost of a matched photo
dominates, an assumption made by Theia’s design. Figure 8(a)
shows the cost per relevant photo, i.e., a photo with cloudy sky,
for incremental search as achieved by the participants (Theia).
Figure 8(a) also shows the cost for two hypothetical cases, Lower
Bound and Single Pass. Both hypothetical cases assume a perfect
query that will only return relevant photos. Lower Bound is the
theoretical minimum cost of the same search task when all the 20

relevant photos come from a single device and only 20 photos are
searched. Single Pass searches all the photos in all smartphones
without budget constraint to return 20 relevant photos. It repre-
sents the lower bound for the cost using non-incremental search.

The results show that incremental search assists search users to
effectively reduce the cost per relevant photo by an average of
59% compared to Single Pass. We expect incremental search will
reduce the cost even more significantly in real deployments where
there are more smartphones and photos to search. On the other
hand, the cost of incremental search is on average 6 times larger
than the theoretical minimum, which shows that there is still sub-
stantial room for improvement in our implementation.

Our results further show that the search user’s feedback also
helps. Figure 8(b) shows the success rates of search into devices
from which search results are and are not marked by the partici-
pants as relevant in the previous searches, respectively. The suc-
cess rate is defined as the number of relevant photos divided by
the number of search results. We see that Theia’s use of the user
feedback increases the success rate by 44% compared to searching
the smartphones that are not marked by the search user.

6.1.3 Participants’ Interaction with Theia
By monitoring the participants, we are able to inspect their interac-
tion with Theia. Figure 9 shows the search processes by four par-
ticipants, P1 to P4. P2 and P4 incurred the lowest cost among the
10 participants; and P1 and P3 the highest. The X axis denotes
each search (or submission of a query) in the order of performance
and the Y axis denotes the budget the participant chose for each
search. A marker indicates the participant submitted a new query,
usually a revised one. The number of searches and that of the revi-
sions collectively indicate how much time and effort a user
spends.

We make the following observations. First, the 10 participants
used Theia in very different ways, leading to a large range of total
cost (from 973 to 1753 units), a large range of number of searches
(from 9 to 37) and a large range of number of revisions (from 1 to
31). Second, while a few participants like P2 finished the search
with low cost and a small number of searches and revisions, most
participants made a tradeoff between cost and the effort. For ex-
ample, P4 used small budgets and revised a lot to reduce the total
cost, while P1 used large budgets and finished with much fewer
revisions and searches. Finally, a moderate budget 10 to 20 times
of the cost per search result seems to work well as used by P2 and
several other participants. A budget too small as used by P3 and
P4 will lead to more searches not only because a very small
budget will pay a few results but also because the search user re-
ceives less feedback from Theia and can provide feedback only for

0 5 10 15 20 25 30 35
0

100

200

300

400

500

search #

B
u

d
g

e
t

 P1
 P2
 P3
 P4

Figure 9: Search processes for four participants: X axis
indicates the order of searches performed by a partici-
pant; Y axis indicates the budget submitted with each
search; A marker indicates a new or revised query is used

7

Query_1 Query_2 Query_3

0

50

100

150

200

250

300

350

Queries

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

3G

 Theia
 local execution
 full offloading

Query_1 Query_2 Query_3

0

50

100

150

200

250

300

350

Queries

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

WiFi

 Theia
 local execution
 full offloading

Query_1 Query_2 Query_3

0

100

200

300

400

500

Queries

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

3G

 Theia
 local execution
 full offloading

Query_1 Query_2 Query_3

0

100

200

300

400

500

Queries

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

WiFi

 Theia
 local execution
 full offloading

Figure 11: Total smartphone energy consumption of
searching 100 photos with 3G and WiFi connectivity

Figure 11: Execution time of searching 100 photos in a
smartphone with 3G and WiFi connectivity

a few results to help future searches. On the other hand, a budget
too large as used by P1 can be wasteful, in particular when the
query is not well refined yet. Since our participants only received
training of 25 minutes, the above observations strongly suggest
more training and experience will help Theia users significantly
improve their productivity.

All but two of the participants (P1 and P3) found it easy to learn
the concepts of Theia and work with it. P1 and P3, not surpris-
ingly, were frustrated by the large total cost and, in P3’s case, a
large cost despite a lot of effort. All participants would like to
have more predicate options to compose and revise queries. There-
fore, enhancing Theia Gate for richer and more flexible queries is
our immediate future work on this project.

6.2 Measurement of Partitioned Search
We conduct controlled experiments to evaluate the effectiveness
of partitioned search in improving energy efficiency. We execute
the three example queries, Query_1, Query_2, and Query_3, in a
Nexus One smartphone with around 100 photos from a real user’s
smartphone. For each example query, we measure the energy con-
sumption of the Nexus One when using partitioned search. We
repeat all the measurements when the device uses local query
execution and full offloading. Moreover, to evaluate the parti-
tioned search in different network conditions, we repeat each ex-
periment for both the WiFi and the 3G connection. The WiFi con-
nection has an average power draw of 266 mW for transmission,
and shows median RTT of 66 ms between the smartphone and
Theia Server, which are 1140 miles apart. The 3G connection has
an average power draw of 571 mW for transmission, and shows
median RTT of 95ms.

The results, summarized in Figure 10, show that partitioned
search reduces the energy consumption of executing the search by
up to 55% and 81% compared to full offloading and local execu-
tion, respectively. More importantly, partitioned search improves
the efficiency without slowing down the search. As shown in
Figure 11, partitioned search reduces the query execution time
significantly compared to full offloading and local execution in
most of the experiments.

To evaluate if partitioned search adapts to changes in the wireless
link well, we repeat the experiment with Query_1 using the WiFi
network with a one second delay injected into the network connec-
tion in the middle of the experiment. Figure 12 illustrates the parti-
tioning of predicates of Query_1 throughout the experiment. It
demonstrates that the partitioned search algorithm detects the
change in the wireless connection rapidly (after evaluation of a
few photo), and adapts to the new condition by executing the tex-
ture matching predicate locally.

6.3 Field Study
We conduct a field study to assess the real-life experience with
Theia. Our testbed consists of six Android smartphones with Theia
Mobile installed. In particular, we are interested in how fast search
results can be retrieved considering the distributed, wireless, and
resource-limited nature of smartphones. The smartphones include
three HTC Nexus One’s, two Motorola Droids, and one Samsung
Galaxy S. One of HTC Nexus One’s use T-Mobile 3G network,
one of Motorola Droids use Verizon 3G network, the Samsung
Galaxy S uses AT&T 3G network, and the rest use a university
WiFi network. The smartphones are in a different USA state from
where Theia Server is hosted or 1140 miles apart.

Each smartphone is loaded with photos collected from the smart-
phone of a real user. We collected photos from the smartphones of
11 participants. This allows us to repeat each experiment with
photos from two different participants. The participants are all
undergraduate students from a private university in the USA. The
average number of photos we collected from each participant is
189, another evidence that smartphone users leave a lot of photos
in their devices.

We conduct two sets of experiment, and for each set, we choose
photos of 6 participants and store them in the phones (with one
overlap between two sets). We then submit three queries from
Theia Gate, All_Accept, Query_2, and Query_3. All_Accept is a
special query that accepts all the photos it searches without any
processing. It represents a lower bound on the latency of result
retrieval. Compared to All_Accept, Query_2 (similar to Query_1)
and Query_3 have much lower selectivity and much higher execu-
tion time, respectively, which slow down result retrieval.

First, we investigate the latency of retrieving the first search result
from the testbed, as shown in Figure 13(a). The results show that

0 20 40 60 80

RGB thr.

Texture.

Face det.

photo #

p
re

d
ic

a
te

s remote
execution

delay added
at this point

 local
execution

Figure 12: Theia adapts to network condition change
through dynamic partition. X axis shows the order of pho-
tos evaluated by Query_1; Y axis shows the predicates in
Query_1; The thick line shows the border between the
predicates that are executed locally and remotely

8

All_Accept Query_2 Query_3

0

20

40

60

80

Queries

F
ir

s
t

R
e

s
u

lt
 L

a
te

n
c

y
 (

s
)

 testbed
 single smartphone

All_Accept Query_2 Query_3

0

10

20

30

40

Queries

R
e

s
u

lt
 In

te
rv

a
l (

s
)

 testbed
 single smartphone

(a) (b)

Figure 13: (a) Latency of getting the first result, (b) Inter-
val between consecutive results. Bars show the median and
error bars show 25 and 75 percentiles

the latency of retrieving the first result is as low as 4 seconds in
All Accept and no more than 30 seconds in Query_2 and Query_3.

Second, we investigate the time interval between retrieving the
consecutive results from the testbed, as shown in Figure 13(b).
The results show that the median interval between consecutive
results is as low as 0.7 seconds in All_Accept and is no more than
7 seconds in Query_2 and Query_3.

Figure 13 also shows the latency of retrieving the first result and
the interval between consecutive results for a single smartphone.
We see that the latency increases noticeably with only one smart-
phone. These results show that increasing the number of smart-
phones reduces the latency of result retrieval significantly in
Theia. Therefore, we expect that latency in Theia will be further
reduced in real deployments with many more smartphones.

We also found that it takes a median of 5 seconds for each device
to receive the search push notification from Theia Server.

7. Related Work
To the best of the authors’ knowledge, Theia is the first search
system that treats resource-constrained smartphones as real-time
searchable photo databases. No existing photo search system sup-
ports incremental and partitioned search, which are the key to
Theia’s capability to control search cost and improve search effi-
ciency. While prior work has studied distributed, resource-
constrained sensor nodes as databases, e.g., TinyDB [9], search in
such databases is predefined and the retrieval of search results
through multiple network hops incurs most of the energy cost. In
contrast, search is opportunistic in Theia and the execution of
query inside the database (smartphone) incurs most of the energy
cost due to the compute-intensive nature of photo content search.
As a result, Theia faces a very unique set of technical challenges.

All existing photo search systems such as images.google and
Diamond [3] host databases in powerful servers. They focus on
making search results relevant and returned fast. There is no need
for incremental or partitioned search. Moreover, images.google
indexes photos and supports textual queries. In contrast, indexing
photos would be impractical to opportunistic search in Theia since
the queries are not known a priori.

Theia’s query design draws upon results from research in rela-
tional databases [6, 10, 11]. However, unlike queries in relational
databases that are textual, queries in Theia are XML data struc-
tures and photo-processing code objects. Partitioned search in
Theia leverages ideas in query optimization in relational databases
[6, 10, 11]. However, instead of minimizing the query execution
time in a server-hosted database, Theia’s partitioned search mini-
mizes the energy consumption of query execution.

There is a wealth of research on task offloading and remote execu-
tion for mobile devices in order to leverage the resources in the
cloud and save resources in the device, e.g., [12]. Unlike existing
work that target offloading for a program with a known order of
execution, partitioned search is designed for ordering and parti-
tioning predicates that have no pre-determined order of execution.

The fundamental motivation of Theia is similar to that of partici-
patory sensing applications [13-16]. That is, data captured by a
smartphone user may be useful to others. However, Theia differs
from participatory sensing in how data captured by a smartphone
user is made useful to others. While smartphone users share pre-
determined data in participatory sensing applications, they do not
know which photos to share in Theia. As a result, Theia is realized
as a search system rather than a sensor network.

8. Discussions and Future work
While this paper focuses on the system design and evaluation of
Theia, we next discuss several important issues that we plan to
address in the future.

8.1 Privacy and Security
Similar to participatory sensing applications, protecting smart-
phone owners’ privacy is vital for wide adoption of Theia. A sim-
ple solution is to ask smartphone users who participate to tag pho-
tos for Theia search or simply store them in a special folder, and
Theia Mobile’s Search Engine will only examine these photos.
The current Theia prototype adopts this solution. Interviews with
the participants in our user study suggest that such a simple ar-
rangement is indeed usable and acceptable because it is mentally
similar to how people share photos on-line already. However,
more sophisticated solutions to simplify user’s effort in protecting
privacy may be needed for real-world deployment.

The opportunistic nature of Theia also invites a security concern
because a Theia query is a piece of code created by a search user
to execute inside others’ smartphones. Since Theia Gate only al-
lows search users to compose and revise queries with given predi-
cates and their parameters, our current prototype dodges this con-
cern. On the other hand, the architecture of Theia does provide
several means to address the security concern in a more rigorous
manner. First, Theia Mobile’s Search Engine can sandbox query
execution using well-known techniques [17]. Moreover, Theia
Server can leverage its computational power to verify and test
queries with automatic software test technologies similar to that
provided by [18].

8.2 Relevance Locality
A key feature of Theia is to allow search users to mark search
results that they find relevant. When the same query is submitted
again, Theia will give a higher priority to smartphones from which
the relevant photos are retrieved. The evaluation showed this
feature helps the effectiveness of search significantly.

The effectiveness of this simple feature suggests something sig-
nificant: relevance locality. That is, relevant results are very likely
to come from the same database (smartphone in our case) and
maybe also from similar databases. This is not surprising in view
of the temporal and spatial locality of smartphones and the rela-
tively stable personal interest of a smartphone user. For example,
if a photo with the lost child in our example is found from a
smartphone, it is likely more relevant photos may be in the same
smartphone and smartphones that have taken photos from a similar
location and time. Such relevance locality can be true to any dis-

9

tributed database that stores acquired data locally, including
smartphones and wireless sensor nodes.

While Theia already capitalizes relevance locality in smartphone
photos by simply treating smartphones with relevant photos fa-
vorably, we plan to further study relevance locality to improve the
scoping of opportunistic search.

9. Conclusion
We reported the first working system that allows content-based
search of photos inside smartphones. By using incremental search,
Theia helps search users to effectively reduce the cost per relevant
photo. The use of user’s feedback to refine search scope also helps
to retrieve more relevant photos, thanks to relevance locality. By
using partitioned search, Theia reduces the energy consumption of
executing the search, even under changing network conditions.
Theia returns results with median latency of seconds from a single
smartphone. Finally, Theia is an important first step toward oppor-
tunistic content search of smartphone photos. It invites further
research into many interesting problems when users search smart-
phones for photos that interest them.

10. References

[1] M. Satyanarayanan, "Mobile computing: the next decade,"
in Proc. ACM MobiCloud, 2010.

[2] CNN report, "New Jersey family's picture catches theft in the
making,"
http://www.cnn.com/2010/CRIME/08/24/new.jersey.theft.ph
oto/index.html?hpt=C1, 2010.

[3] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyana-
rayanan, G. Ganger, E. Riedel, and A. Ailamaki, "Diamond:
A storage architecture for early discard in interactive
search," in Proc. USENIX FAST, 2004.

[4] R. Lipton, J. Naughton, and D. Schneider, "Practical selec-
tivity estimation through adaptive sampling," in Proceedings
of the 1990 ACM SIGMOD international conference on
Management of data, 1990.

[5] U. Feige, L. Lovász, and P. Tetali, "Approximating min sum
set cover," in Algorithmica, vol. 40, issue 4, 2004.

[6] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J.
Widom, "Adaptive ordering of pipelined stream filters," in
Proc. ACM SIGMOD Management of data, 2004.

[7] U. Srivastava, K. Munagala, and J. Widom, "Operator
placement for in-network stream query processing," in Proc.
ACM PODS, 2005.

[8] Android C2DM,
http://code.google.com/android/c2dm/index.html.

[9] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W.
Hong, "TinyDB: an acquisitional query processing system
for sensor networks," in ACM Transactions on Database
Systems (TODS), vol. 30, issue 1, 2005.

[10] A. Deshpande, Z. Ives, and V. Raman, "Adaptive query
processing," in Foundations and Trends in Databases, vol.
1, issue 1, 2007.

[11] A. Kemper, G. Moerkotte, and M. Steinbrunn, "Optimizing
boolean expressions in object bases," in Proc. VLDB, 1992.

[12] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S.
Saroiu, R. Chandra, and P. Bahl, "Maui: Making smart-
phones last longer with code offload," in Proc.
ACM/USENIX MobiSys, 2010.

[13] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and
N. Triandopoulos, "AnonySense: Privacy-aware people-
centric sensing," in Proc. ACM/USENIX MobiSys, 2008.

[14] S. Gaonkar, J. Li, R. Choudhury, L. Cox, and A. Schmidt,
"Micro-blog: sharing and querying content through mobile
phones and social participation," in Proc. ACM/USENIX
MobiSys, 2008.

[15] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin,
M. Hansen, E. Howard, R. West, and P. Boda, "PEIR, the
Personal Environmental Impact Report, as a Platform for
Participatory Sensing Systems Research," in Proc.
ACM/USENIX MobiSys, 2009.

[16] T. Das, P. Mohan, V. Padmanabhan, R. Ramjee, and A.
Sharma, "PRISM: platform for remote sensing using smart-
phones," in Proc. ACM/USENIX MobiSys, 2010.

[17] D. S. Peterson, M. Bishop, and R. Pandey, "A flexible con-
tainment mechanism for executing untrusted code," in Proc.
USENIX Security Symposium, 2002.

[18] G. Candea, S. Bucur, and C. Zamfir, "Automated software
testing as a service," in Proc. ACM Symposium on Cloud
Computing (SoCC), 2010.

